OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 9 — May. 5, 2014
  • pp: 10570–10578

Thermal management in hybrid InP/silicon photonic crystal nanobeam laser

Alexandre Bazin, Paul Monnier, Xavier Lafosse, Grégoire Beaudoin, Rémy Braive, Isabelle Sagnes, Rama Raj, and Fabrice Raineri  »View Author Affiliations

Optics Express, Vol. 22, Issue 9, pp. 10570-10578 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1742 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Thermal properties of InP-based quantum well photonic crystal nanobeam lasers heterogeneously integrated on silicon on insulator waveguides are studied. We show both numerically and experimentally the reduction of the thermal resistance of the III-V cavities by adjusting the composition of the layer which bonds the III-V materials to the silicon wafer and by adding an over-cladding on top of the cavities. Using a bonding layer made of benzocyclobutene and SiO2 and an over-cladding of MgF2, we found a decrease by a factor higher than 35 compared to air-suspended photonic crystal nanobeam cavities. Such optimized structures are demonstrated to operate under continuous wave pumping for several 10's of minutes despite the adverse effect of non-radiative surface recombination of carriers.

© 2014 Optical Society of America

OCIS Codes
(120.6810) Instrumentation, measurement, and metrology : Thermal effects
(140.3460) Lasers and laser optics : Lasers
(220.4241) Optical design and fabrication : Nanostructure fabrication
(230.5298) Optical devices : Photonic crystals

ToC Category:
Lasers and Laser Optics

Original Manuscript: February 27, 2014
Manuscript Accepted: April 8, 2014
Published: April 24, 2014

Alexandre Bazin, Paul Monnier, Xavier Lafosse, Grégoire Beaudoin, Rémy Braive, Isabelle Sagnes, Rama Raj, and Fabrice Raineri, "Thermal management in hybrid InP/silicon photonic crystal nanobeam laser," Opt. Express 22, 10570-10578 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Sekoguchi, Y. Takahashi, T. Asano, S. Noda, “Photonic crystal nanocavity with a Q-factor of ~9 million,” Opt. Express 22(1), 916–924 (2014). [CrossRef] [PubMed]
  2. Y. Halioua, A. Bazin, P. Monnier, T. J. Karle, I. Sagnes, G. Roelkens, D. Van Thourhout, F. Raineri, R. Raj, “III-V photonic crystal wire cavity laser on silicon wafer,” J. Opt. Soc. Am. B 27(10), 2146–2150 (2010). [CrossRef]
  3. S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, M. Notomi, “High speed ultracompact buried heterostructure photonic crystal laser with 13fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010). [CrossRef]
  4. K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, M. Notomi, “Ultralow-power all-optical RAM based on nanocavities,” Nat. Photonics 6(4), 248–252 (2012). [CrossRef]
  5. A. Bazin, K. Lengle, M. Gay, P. Monnier, L. Bramerie, R. Braive, G. Beaudoin, I. Sagnes, R. Raj, F. Raineri, “Ultrafast all-optical switching and error-free 10Gbit/s wavelength conversion in hybrid InP-silicon on insulator nanocavities using surface quantum wells,” Appl. Phys. Lett. 104(1), 011102 (2014). [CrossRef]
  6. D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, J. Vucković, “Controlling cavity reflectivity with a single quantum dot,” Nature 450(7171), 857–861 (2007). [CrossRef] [PubMed]
  7. H. M. H. Chong, R. M. De La Rue, “Tuning of photonic crystal waveguide microcavity by thermo-optic effect,” IEEE Photon. Technol. Lett. 16(6), 1528–1530 (2004). [CrossRef]
  8. G. Vecchi, F. Raineri, I. Sagnes, A. Yacomotti, P. Monnier, T. J. Karle, K.-H. Lee, R. Braive, L. Le Gratiet, S. Guilet, G. Beaudoin, A. Taneau, S. Bouchoule, A. Levenson, R. Raj, “Continuous-wave operation of photonic band-edge laser near 1.55 µm on silicon wafer,” Opt. Express 15(12), 7551–7556 (2007). [CrossRef] [PubMed]
  9. J. Hwang, H. Ryu, D. Song, I. Han, H. Park, D. Jang, Y. Lee, “Continuous room-temperature operation of optically pumped two-dimensional photonic crystal lasers at 1.6 µm,” IEEE Photon. Technol. Lett. 12(10), 1295–1297 (2000). [CrossRef]
  10. J. R. Cao, Wan Kuang, Zhi-Jian Wei, Sang-Jun Choi, M. Haixia Yu, J. D. Bagheri, O’Brien, P. D. Dapkus, “Sapphire-bonded photonic crystal microcavity lasers and their far-field radiation patterns,” IEEE Photon. Technol. Lett. 17(1), 4–6 (2005). [CrossRef]
  11. Y. Halioua, A. Bazin, P. Monnier, T. J. Karle, G. Roelkens, I. Sagnes, R. Raj, F. Raineri, “Hybrid III-V semiconductor/silicon nanolaser,” Opt. Express 19(10), 9221–9231 (2011). [CrossRef] [PubMed]
  12. A. Bazin, R. Raj, F. Raineri, “Design of silica encapsulated high-Q photonic crystal nanobeam,” J. Lightwave Technol. 32(5), 952–958 (2014). [CrossRef]
  13. Y. Zhang, M. Khan, Y. Huang, J.-H. Ryou, P. Deotare, R. Dupuis, M. Lončar, “Photonic crystal nanobeam lasers,” Appl. Phys. Lett. 97(5), 051104 (2010). [CrossRef]
  14. Y. Gong, B. Ellis, G. Shambat, T. Sarmiento, J. S. Harris, J. Vuckovic, “Nanobeam photonic crystal cavity quantum dot laser,” Opt. Express 18(9), 8781–8789 (2010). [CrossRef] [PubMed]
  15. B.-H. Ahn, J.-H. Kang, M.-K. Kim, J.-H. Song, B. Min, K.-S. Kim, Y.-H. Lee, “One-dimensional parabolic-beam photonic crystal laser,” Opt. Express 18(6), 5654–5660 (2010). [CrossRef] [PubMed]
  16. Q. Quan, P. B. Deotare, M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96(20), 203102 (2010). [CrossRef]
  17. M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, O. Painter, “Optomechanical crystals,” Nature 462(7269), 78–82 (2009). [CrossRef] [PubMed]
  18. L. D. Haret, T. Tanabe, E. Kuramochi, M. Notomi, “Extremely low power optical bistability in silicon demonstrated using 1D photonic crystal nanocavity,” Opt. Express 17(23), 21108–21117 (2009). [CrossRef] [PubMed]
  19. V. Moreau, G. Tessier, F. Raineri, M. Brunstein, A. Yacomotti, R. Raj, I. Sagnes, A. Levenson, Y. De Wilde, “Transient thermoreflectance imaging of active photonic crystals,” Appl. Phys. Lett. 96(9), 091103 (2010). [CrossRef]
  20. G. Roelkens, J. Brouckaert, D. Van Thourhout, R. Baets, R. Nötzel, M. Smit, “Adhesive bonding of InP/InGaAsP dies to processed silicon-on-insulator wafers using dvs-bis-benzocyclobutene,” J. Electrochem. Soc. 153(12), G1015–G1019 (2006). [CrossRef]
  21. S. Guilet, S. Bouchoule, C. Jany, C. S. Corr, P. Chabert, “Optimization of a Cl2-H2 inductively coupled plasma etching process adapted to nonthermalized InP wafers for the realization of deep ridge heterostructures,” J. Vac. Sci. Technol. B 24(5), 2381–2387 (2006). [CrossRef]
  22. T. J. Karle, Y. Halioua, F. Raineri, P. Monnier, R. Braive, L. Le Gratiet, G. Beaudoin, I. Sagnes, G. Roelkens, F. van Laere, D. Van Thourhout, R. Raj, “Heterogeneous integration and precise alignment of InP-based photonic crystal lasers to complementary metal-oxide semiconductor fabricated silicon-on-insulator wire waveguides,” J. Appl. Phys. 107(6), 063103 (2010). [CrossRef]
  23. L. A. Coldren, S. W. Corzine, and M. L. Masanovic, Diode Lasers and Photonic Integrated Circuit (John Wiley, 2012).
  24. F. Raineri, C. Cojocaru, P. Monnier, A. Levenson, R. Raj, C. Seassal, X. Letartre, P. Viktorovitch, “Ultrafast dynamics of the third-order nonlinear response in a two-dimensional InP-based photonic crystal,” Appl. Phys. Lett. 85(11), 1880 (2004). [CrossRef]
  25. H. Oigawa, J.-F. Fan, Y. Nannichi, H. Sugahara, M. Oshima, “Universal passivation effect of (NH4)2Sx treatment on the surface of III-V compound semiconductors,” J. Appl. Phys. 30(3A), L322–L325 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited