OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 9 — May. 5, 2014
  • pp: 10642–10654

External cavity diode lasers with 5kHz linewidth and 200nm tuning range at 1.55μm and methods for linewidth measurement

Shayne Bennetts, Gordon D. McDonald, Kyle S. Hardman, John E. Debs, Carlos C. N. Kuhn, John D. Close, and Nicholas P Robins  »View Author Affiliations

Optics Express, Vol. 22, Issue 9, pp. 10642-10654 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2669 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Two simple external cavity diode laser designs using fibre pigtailed gain chips are tested and their properties compared with a high end DBR fibre laser. These ECDLs demonstrate a FWHM linewidth as low as 5.2kHz with a fitted Lorentzian FWHM linewidth as low as 1.6kHz. Tuning ranges of 200nm covering 1420nm to 1620nm were demonstrated. To the best of our knowledge these are the narrowest linewidth and most broadly tunable external cavity diode lasers reported to date. The improvement in linewidth is attributed to greatly enhanced acoustic isolation allowed by using fiber coupled gain chips and by replacing kinematic mounts with a pair of rotatable wedges for cavity alignment which eliminates acoustic resonances. A detailed description and discussion of techniques used to characterize the frequency noise and linewidths of these lasers is provided.

© 2014 Optical Society of America

OCIS Codes
(140.2020) Lasers and laser optics : Diode lasers
(140.3570) Lasers and laser optics : Lasers, single-mode
(140.3600) Lasers and laser optics : Lasers, tunable

ToC Category:
Lasers and Laser Optics

Original Manuscript: January 28, 2014
Revised Manuscript: March 9, 2014
Manuscript Accepted: March 26, 2014
Published: April 25, 2014

Shayne Bennetts, Gordon D. McDonald, Kyle S. Hardman, John E. Debs, Carlos C. N. Kuhn, John D. Close, and Nicholas P Robins, "External cavity diode lasers with 5kHz linewidth and 200nm tuning range at 1.55μm and methods for linewidth measurement," Opt. Express 22, 10642-10654 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. J. Duarte, Tunable Lasers Handbook (Academic, San Diego, 1995).
  2. J. Nilsson, W. A. Clarkson, R. Selvas, J. K. Sahu, P. W. Turner, S. U. Alam, A. B. Grudinin, “High-power wavelength-tunable cladding-pumped rare-earth-doped silica fiber lasers,” Opt. Fiber Technol. 10(1), 5–30 (2004), http://www.sciencedirect.com/science/article/pii/S1068520003000464 . [CrossRef]
  3. D. Y. Shen, J. K. Sahu, W. A. Clarkson, “High-power widely tunable Tm:fibre lasers pumped by an Er,Yb co-doped fibre laser at 1.6 mum,” Opt. Express 14(13), 6084–6090 (2006). [CrossRef] [PubMed]
  4. S. S. Sané, S. Bennetts, J. E. Debs, C. C. N. Kuhn, G. D. McDonald, P. A. Altin, J. D. Close, N. P. Robins, “11 W narrow linewidth laser source at 780 nm for laser cooling and manipulation of Rubidium,” Opt. Express 20(8), 8915–8919 (2012). [CrossRef] [PubMed]
  5. C. Spiegelberg, J. Geng, Y. Hu, Y. Kaneda, S. Jiang, N. Peyghambarian, “Low-noise narrow-linewidth fiber laser at 1550 nm (June 2003),” J. Lightwave Technol. 22(1), 57–62 (2004). [CrossRef]
  6. S. Foster, G. A. Cranch, A. Tikhomirov, “Experimental evidence for the thermal origin of 1/f frequency noise in erbium-doped fiber lasers,” Phys. Rev. A 79(5), 053802 (2009), http://link.aps.org/doi/10.1103/PhysRevA.79.053802 . [CrossRef]
  7. T. Udem, R. Holzwarth, T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002), doi:. [CrossRef] [PubMed]
  8. C. E. Wieman, L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62(1), 1–20 (1991), http://scitation.aip.org/content/aip/journal/rsi/62/1/10.1063/1.1142305 . [CrossRef]
  9. J. C. Camparo, “The diode laser in atomic physics,” Contemp. Phys. 26(5), 443–477 (1985), http://www.tandfonline.com/doi/abs/10.1080/00107518508210984 . [CrossRef]
  10. K. B. MacAdam, A. Steinbach, C. Wieman, “A narrow‐band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60(12), 1098–1111 (1992), http://scitation.aip.org/content/aapt/journal/ajp/60/12/10.1119/1.16955 . [CrossRef]
  11. L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117(5–6), 541–549 (1995), http://www.sciencedirect.com/science/article/pii/003040189500146Y . [CrossRef]
  12. L. Nilse, H. J. Davies, C. S. Adams, “Synchronous tuning of extended cavity diode lasers: the case for an optimum pivot point,” Appl. Opt. 38(3), 548–553 (1999). [CrossRef] [PubMed]
  13. S. E. Park, T. Y. Kwon, E.-J. Shin, H. S. Lee, “A compact extended-cavity diode laser with a Littman configuration,” IEEE Trans. Instrum. Meas. 52(2), 280–283 (2003), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1202029 .
  14. L. B. Mercer, “1/f frequency noise effects on self-heterodyne linewidth measurements,” J. Lightwave Technol. 9(4), 485–493 (1991), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=76663 . [CrossRef]
  15. R. Wyatt, W. J. Devlin, “10 kHz linewidth 1.5μm InGaAsP external cavity laser with 55 nm tuning range,” Electron. Lett. 19(3), 110–112 (1983), http://digital-library.theiet.org/content/journals/10.1049/el_19830079 . [CrossRef]
  16. R. Wyatt, “Spectral linewidth of external cavity semiconductor lasers with strong, frequency-selective feedback,” Electron. Lett. 21(15), 658–659 (1985), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4250665 . [CrossRef]
  17. N. A. Olsson, J. P. van der Ziel, “Performance characteristics of 1.5μm external cavity semiconductor lasers for coherent optical communication,” J. Lightwave Technol. 5(4), 510–515 (1987), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1075530 . [CrossRef]
  18. J. M. Kahn, C. A. Burrus, G. Raybon, “High-stability 1.5μm external-cavity semiconductor lasers for phase-lock applications,” IEEE Photon. Technol. Lett. 1(7), 159–161 (1989), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=36024 . [CrossRef]
  19. D. J. Thompson, R. E. Scholten, “Narrow linewidth tunable external cavity diode laser using wide bandwidth filter,” Rev. Sci. Instrum. 83(2), 023107 (2012), http://scitation.aip.org/content/aip/journal/rsi/83/2/10.1063/1.3687441 . [CrossRef] [PubMed]
  20. H. Talvitie, A. Pietiläinen, H. Ludvigsen, E. Ikonen, “Passive frequency and intensity stabilization of extended-cavity diode lasers,” Rev. Sci. Instrum. 68(1), 1–7 (1997), http://scitation.aip.org/content/aip/journal/rsi/68/1/10.1063/1.1147810 . [CrossRef]
  21. S. D. Saliba, R. E. Scholten, “Linewidths below 100 kHz with external cavity diode lasers,” Appl. Opt. 48(36), 6961–6966 (2009). [CrossRef] [PubMed]
  22. T. Nazarova, C. Lisdat, F. Riehle, U. Sterr, “Low-frequency-noise diode laser for atom interferometry,” J. Opt. Soc. Am. B 25(10), 1632–1638 (2008). [CrossRef]
  23. K. Numata, J. Camp, M. A. Krainak, L. Stolpner, “Performance of planar-waveguide external cavity laser for precision measurements,” Opt. Express 18(22), 22781–22788 (2010). [CrossRef] [PubMed]
  24. P. Zorabedian, W. R. Trutna., “Interference-filter-tuned, alignment-stabilized, semiconductor external-cavity laser,” Opt. Lett. 13(10), 826–828 (1988). [CrossRef] [PubMed]
  25. E. Luvsandamdin, S. Spießberger, M. Schiemangk, A. Sahm, G. Mura, A. Wicht, A. Peters, G. Erbert, G. Tränkle, “Development of narrow linewidth, micro-integrated extended cavity diode lasers for quantum optics experiments in space,” Appl. Phys. B 111(2), 255–260 (2013), doi:. [CrossRef]
  26. T. Hieta, M. Vainio, C. Moser, E. Ikonen, “External-cavity lasers based on a volume holographic grating at normal incidence for spectroscopy in the visible range,” Opt. Commun. 282(15), 3119–3123 (2009), http://www.sciencedirect.com/science/article/pii/S0030401809004180 . [CrossRef]
  27. X. Baillard, A. Gauguet, S. Bize, P. Lemonde, P. Laurent, A. Clairon, P. Rosenbusch, “Interference-filter-stabilized external-cavity diode lasers,” Opt. Commun. 266(2), 609–613 (2006), http://www.sciencedirect.com/science/article/pii/S0030401806004561 . [CrossRef]
  28. M. Gilowski, C. Schubert, M. Zaiser, W. Herr, T. Wübbena, T. Wendrich, T. Müller, E. M. Rasel, W. Ertmer, “Narrow bandwidth interference filter-stabilized diode laser systems for the manipulation of neutral atoms,” Opt. Commun. 280(2), 443–447 (2007), http://www.sciencedirect.com/science/article/pii/S0030401807008577 . [CrossRef]
  29. N. Wang, M. Feng, Z. Feng, M. Y. Lam, L. Gao, B. Chen, A. Q. Liu, Y. H. Tsang, X. Zhang, “Narrow-Linewidth Tunable Lasers With Retro-Reflective External Cavity,” IEEE Photon. Technol. Lett. 24(18), 1591–1593 (2012), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6253231 . [CrossRef]
  30. P. McNicholl, H. J. Metcalf, “Synchronous cavity mode and feedback wavelength scanning in dye laser oscillators with gratings,” Appl. Opt. 24(17), 2757–2761 (1985). [CrossRef] [PubMed]
  31. T. Okoshi, K. Kikuchi, A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16(16), 630–631 (1980), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4244210 . [CrossRef]
  32. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991).
  33. L. Richter, H. I. Mandelberg, M. Kruger, P. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” IEEE J. Quantum Electron. 22(11), 2070–2074 (1986), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1072909 . [CrossRef]
  34. J. W. Dawson, N. Park, K. J. Vahala, “An improved delayed self-heterodyne interferometer for linewidth measurements,” IEEE Photon. Technol. Lett. 4(9), 1063–1066 (1992). [CrossRef]
  35. H. Tsuchida, “Limitation and improvement in the performance of recirculating delayed self-heterodyne method for high-resolution laser lineshape measurement,” Opt. Express 20(11), 11679–11687 (2012). [CrossRef] [PubMed]
  36. P. Horak, W. H. Loh, “On the delayed self-heterodyne interferometric technique for determining the linewidth of fiber lasers,” Opt. Express 14(9), 3923–3928 (2006). [CrossRef] [PubMed]
  37. G. Di Domenico, S. Schilt, P. Thomann, “Simple approach to the relation between laser frequency noise and laser line shape,” Appl. Opt. 49(25), 4801–4807 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited