OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 9 — May. 5, 2014
  • pp: 10655–10660

Erbium-doped waveguide DBR and DFB laser arrays integrated within an ultra-low-loss Si3N4 platform

Michael Belt and Daniel J. Blumenthal  »View Author Affiliations

Optics Express, Vol. 22, Issue 9, pp. 10655-10660 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (934 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Record low optical threshold power and high slope efficiency are reported for arrays of distributed Bragg reflector lasers integrated within an ultra-low-loss Si3N4 planar waveguide platform. Additionally, arrays of distributed feedback laser designs are presented that show improvements in pump-to-signal conversion efficiency of over two orders of magnitude beyond that found in previously published devices. Lithographically defined sidewall gratings provide the required lasing feedback for both cavity configurations. Lasing emission is shown over a wide wavelength range (1534 to 1570 nm), with output powers up to 2.1 mW and side mode suppression ratios in excess of 50 dB.

© 2014 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(140.3500) Lasers and laser optics : Lasers, erbium
(230.1480) Optical devices : Bragg reflectors

ToC Category:
Lasers and Laser Optics

Original Manuscript: December 20, 2013
Revised Manuscript: February 4, 2014
Manuscript Accepted: February 4, 2014
Published: April 25, 2014

Michael Belt and Daniel J. Blumenthal, "Erbium-doped waveguide DBR and DFB laser arrays integrated within an ultra-low-loss Si3N4 platform," Opt. Express 22, 10655-10660 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, J. E. Bowers, “Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding,” Opt. Express 19(24), 24090–24101 (2011). [CrossRef] [PubMed]
  2. M. Belt, J. Bovington, R. Moreira, J. F. Bauters, M. J. Heck, J. S. Barton, J. E. Bowers, D. J. Blumenthal, “Sidewall gratings in ultra-low-loss Si3N4 planar waveguides,” Opt. Express 21(1), 1181–1188 (2013). [CrossRef] [PubMed]
  3. M. Belt, T. Huffman, M. L. Davenport, W. Li, J. S. Barton, D. J. Blumenthal, “Arrayed narrow linewidth erbium-doped waveguide-distributed feedback lasers on an ultra-low-loss silicon-nitride platform,” Opt. Lett. 38(22), 4825–4828 (2013). [CrossRef] [PubMed]
  4. H. Park, A. Fang, S. Kodama, J. Bowers, “Hybrid silicon evanescent laser fabricated with a silicon waveguide and III-V offset quantum wells,” Opt. Express 13(23), 9460–9464 (2005). [CrossRef] [PubMed]
  5. S. Srinivasan, A. W. Fang, D. Liang, J. Peters, B. Kaye, J. E. Bowers, “Design of phase-shifted hybrid silicon distributed feedback lasers,” Opt. Express 19(10), 9255–9261 (2011). [CrossRef] [PubMed]
  6. R. E. Camacho-Aguilera, Y. Cai, N. Patel, J. T. Bessette, M. Romagnoli, L. C. Kimerling, J. Michel, “An electrically pumped germanium laser,” Opt. Express 20(10), 11316–11320 (2012). [CrossRef] [PubMed]
  7. J. Bradley, L. Agazzi, D. Geskus, F. Ay, K. Wörhoff, M. Pollnau, “Gain bandwidth of 80 nm and 2 dB/cm peak gain in Al2O3:Er3+ optical amplifiers on silicon,” J. Opt. Soc. Am. B 27(2), 187–196 (2010). [CrossRef]
  8. J. Purnawirman, J. Sun, T. N. Adam, G. Leake, D. Coolbaugh, J. D. Bradley, E. S. Hosseini, M. R. Watts, “C- and L-band erbium-doped waveguide lasers with wafer-scale silicon nitride cavities,” Opt. Lett. 38(11), 1760–1762 (2013). [CrossRef] [PubMed]
  9. F. Ay, A. Aydinli, “Comparative investigation of hydrogen bonding in silicon based PECVD grown dielectrics for optical waveguides,” Opt. Mater. 26(1), 33–46 (2004). [CrossRef]
  10. K. Wörhoff, J. D. B. Bradley, F. Ay, D. Geskus, T. P. Blauwendraat, M. Pollnau, “Reliable low-cost fabrication of low-loss Al2O3:Er3+ waveguides with 5.4-dB optical gain,” IEEE J. Quantum Electron. 45(5), 454–461 (2009). [CrossRef]
  11. E. H. Bernhardi, “Bragg-grating-based rare-earth-ion-doped channel waveguide lasers and their applications,” Ph.D. dissertation (Department of Electrical Engineering, Mathematics, and Computer Science, University of Twente, 2012).
  12. G. N. van den Hoven, E. Snoeks, A. Polman, C. van Dam, J. W. M. van Uffelen, M. K. Smit, “Upconversion in Er-implanted Al2O3 waveguides,” J. Appl. Phys. 79(3), 1258–1266 (1996). [CrossRef]
  13. Purnawirman, E. Hosseini, J. Bradley, J. Sun, G. Leake, T. Adam, D. Coolbaugh, and M. Watts, “CMOS compatible high power erbium doped distributed feedback lasers,” in Advanced Photonics 2013, H. Chang, V. Tolstikhin, T. Krauss, and M. Watts, eds., OSA Technical Digest (online) (Optical Society of America, 2013), paper IM2A.4.
  14. D. L. Veasey, J. M. Gary, J. Amin, J. A. Aust, “Time-dependent modeling of erbium-doped waveguide lasers in lithium niobate pumped at 980 and 1480 nm,” IEEE J. Quantum Electron. 33(10), 1647–1662 (1997). [CrossRef]
  15. J. Hoyo, V. Berdejo, T. Toney Fernandez, A. Ferrer, A. Ruiz, J. A. Valles, M. A. Rebolledo, I. Ortega-Feliu, J. Solis, “Femtosecond laser written 16.5 mm long glass-waveguide amplifier and laser with 5.2 dB cm−1 internal gain at 1534 nm,” Laser Phys. Lett. 10(10), 105802 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited