OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 9 — May. 5, 2014
  • pp: 10661–10674

Transport of Intensity phase imaging by intensity spectrum fitting of exponentially spaced defocus planes

Zhong Jingshan, Rene A. Claus, Justin Dauwels, Lei Tian, and Laura Waller  »View Author Affiliations

Optics Express, Vol. 22, Issue 9, pp. 10661-10674 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (6562 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose an alternative method for solving the Transport of Intensity equation (TIE) from a stack of through–focus intensity images taken by a microscope or lensless imager. Our method enables quantitative phase and amplitude imaging with improved accuracy and reduced data capture, while also being computationally efficient and robust to noise. We use prior knowledge of how intensity varies with propagation in the spatial frequency domain in order to constrain a fitting algorithm [Gaussian process (GP) regression] for estimating the axial intensity derivative. Solving the problem in the frequency domain inspires an efficient measurement scheme which captures images at exponentially spaced focal steps, significantly reducing the number of images required. Low–frequency artifacts that plague traditional TIE methods can be suppressed without an excessive number of captured images. We validate our technique experimentally by recovering the phase of human cheek cells in a brightfield microscope.

© 2014 Optical Society of America

OCIS Codes
(100.3010) Image processing : Image reconstruction techniques
(100.5070) Image processing : Phase retrieval

ToC Category:
Image Processing

Original Manuscript: December 30, 2013
Revised Manuscript: March 30, 2014
Manuscript Accepted: April 7, 2014
Published: April 25, 2014

Zhong Jingshan, Rene A. Claus, Justin Dauwels, Lei Tian, and Laura Waller, "Transport of Intensity phase imaging by intensity spectrum fitting of exponentially spaced defocus planes," Opt. Express 22, 10661-10674 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Popescu, Quantitative phase imaging of cells and tissues (McGraw-HillNew York, 2011).
  2. K. Nugent, D. Paganin, T. Gureyev, “A phase odyssey,” Physics Today 54, 27–32 (2001). [CrossRef]
  3. M. R. Teague, “Deterministic phase retrieval: a Greens function solution,” J. Opt. Soc. Am. 73, 1434–1441 (1983). [CrossRef]
  4. N. Streibl, “Phase imaging by the transport equation of intensity,” Opt. Commun. 49, 6–10 (1984). [CrossRef]
  5. L. J. Allen, M. P. Oxley, “Phase retrieval from series of images obtained by defocus variation,” Opt. Commun. 199, 65–75 (2001). [CrossRef]
  6. M. Soto, E. Acosta, “Improved phase imaging from intensity measurements in multiple planes,” Appl. Opt. 46, 7978–7981 (2007). [PubMed]
  7. L. Waller, L. Tian, G. Barbastathis, “Transport of intensity phase-amplitude imaging with higher order intensity derivatives,” Opt. Express 18, 12552–12561 (2010). [PubMed]
  8. L. Waller, M. Tsang, S. Ponda, S. Yang, G. Barbastathis, “Phase and amplitude imaging from noisy images by Kalman filtering,” Opt. Express 19, 2805–2814 (2011). [PubMed]
  9. Z. Jingshan, J. Dauwels, M. A. Vázquez, L. Waller, “Sparse ACEKF for phase reconstruction,” Opt. Express 21, 18125–18137 (2013). [PubMed]
  10. L. Waller, S. S. Kou, C. J. R. Sheppard, G. Barbastathis, “Phase from chromatic aberrations,” Opt. Express 18, 22817–22825 (2010). [PubMed]
  11. L. Waller, Y. Luo, S. Y. Yang, G. Barbastathis, “Transport of intensity phase imaging in a volume holographic microscope,” Opt. Lett. 35, 2961–2963 (2010). [CrossRef] [PubMed]
  12. P. M. Blanchard, A. H. Greenaway, “Simultaneous multiplane imaging with a distorted diffraction grating,” Appl. Opt. 38, 6692–6699 (1999). [CrossRef]
  13. S. S. Gorthi, E. Schonbrun, “Phase imaging flow cytometry using a focus-stack collecting microscope,” Opt. Lett. 37, 707–709 (2012). [PubMed]
  14. J. R. Fienup, “Reconstruction of an object from the modulus of its Fourier transform,” Opt. Lett. 3, 27–29 (1978). [PubMed]
  15. J. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. 21, 2758–2769 (1982). [PubMed]
  16. D. Paganin, K. A. Nugent, “Noninterferometric phase imaging with partially coherent light,” Phys. Rev. Lett. 80, 2586–2589 (1998).
  17. T. Gureyev, K. Nugent, “Rapid quantitative phase imaging using the transport of intensity equation,” Opt. Commun. 133, 339–346 (1997).
  18. T. Gureyev, A. Pogany, D. Paganin, S. Wilkins, “Linear algorithms for phase retrieval in the Fresnel region,” Opt. Commun. 231, 53–70 (2004).
  19. M. Soto, E. Acosta, S. Ríos, “Performance analysis of curvature sensors: optimum positioning of the measurement planes,” Opt. Express 11, 2577–2588 (2003). [PubMed]
  20. C. Zuo, Q. Chen, Y. Yu, A. Asundi, “Transport-of-intensity phase imaging using Savitzky-Golay differentiation filter-theory and applications,” Opt. Express 21, 5346–5362 (2013). [PubMed]
  21. R. W. Schafer, “What is a Savitzky-Golay filter?[lecture notes],” Signal Processing Magazine, IEEE 28, 111–117 (2011). [CrossRef]
  22. S. Zabler, P. Cloetens, J. Guigay, J. Baruchel, M. Schlenker, “Optimization of phase contrast imaging using hard x rays,” Review of Scientific Instruments 76, 073705 (2005). [CrossRef]
  23. J. Guigay, M. Langer, R. Boistel, P. Cloetens, “Mixed transfer function and transport of intensity approach for phase retrieval in the Fresnel region,” Opt. Lett. 32, 1617–1619 (2007). [CrossRef] [PubMed]
  24. D. Paganin, T. E. Gureyev, K. M. Pavlov, R. A. Lewis, M. Kitchen, “Phase retrieval using coherent imaging systems with linear transfer functions,” Opt. Commun. 234, 87–105 (2004). [CrossRef]
  25. C. E. Rasmussen, C. K. I. Williams, Gaussian Processes for Machine Learning (the MIT Press, 2006)..
  26. B. Xue, S. Zheng, L. Cui, X. Bai, F. Zhou, “Transport of intensity phase imaging from multiple intensities measured in unequally-spaced planes,” Opt. Express 19, 20244–20250 (2011). [CrossRef] [PubMed]
  27. K. Falaggis, T. Kozacki, M. Kujawinska, “Optimum plane selection criteria for single beam phase retrieval techniques based on the contrast transfer function,” Opt. Lett. 39, 30–33 (2014). [CrossRef]
  28. N. Loomis, L. Waller, G. Barbastathis, “High-speed phase recovery using chromatic transport of intensity computation in graphics processing units,” in “Biomedical Optics and 3-D Imaging,” (Optical Society of America, 2010), p. JMA7.
  29. D. J. Lee, M. C. Roggemann, B. M. Welsh, “Cramér-Rao analysis of phase-diverse wave-front sensing,” J. Opt. Soc. Am. A 16, 1005–1015 (1999). [CrossRef]
  30. L. Tian, J. C. Petruccelli, G. Barbastathis, “Nonlinear diffusion regularization for transport of intensity phase imaging,” Opt. Lett. 37, 4131–4133 (2012). [CrossRef] [PubMed]
  31. A. Kostenko, K. J. Batenburg, A. King, S. E. Offerman, L. J. van Vliet, “Total variation minimization approach in in-line X-ray phase-contrast tomography,” Opt. Express 21, 12185–12196 (2013). [CrossRef] [PubMed]
  32. L. Tian, J. C. Petruccelli, Q. Miao, H. Kudrolli, V. Nagarkar, G. Barbastathis, “Compressive X-ray phase tomography based on the transport of intensity equation,” Opt. Lett. 38, 3418–3421 (2013). [CrossRef] [PubMed]
  33. P. Sollich, C. K. I. Williams, “Using the equivalent kernel to understand Gaussian process regression,” in Advances in Neural Information Processing Systems 17,” (the MIT Press, 2005), pp. 1313–1320.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited