OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 9 — May. 5, 2014
  • pp: 10682–10692

Modelization and optimized speckle detection scheme in photorefractive self-referenced acousto-optic imaging

Fabrice Devaux, Jean-Pierre Huignard, and François Ramaz  »View Author Affiliations


Optics Express, Vol. 22, Issue 9, pp. 10682-10692 (2014)
http://dx.doi.org/10.1364/OE.22.010682


View Full Text Article

Enhanced HTML    Acrobat PDF (2691 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A photorefractive BSO single crystal can be used for axially resolved acousto-optic imaging of thick scattering media in absence of a reference beam. This configuration renders the experimental setup easier to realize for imaging through thick scattering media with an improved optical etendue. We present here a model and simulations that explains these results. It is based on the spatial heterogeneity of the speckle pattern incident on the crystal. Optimization of the detector position and of the speckle grain size is confirmed by the model.

© 2014 Optical Society of America

OCIS Codes
(120.6160) Instrumentation, measurement, and metrology : Speckle interferometry
(190.5330) Nonlinear optics : Photorefractive optics
(110.0113) Imaging systems : Imaging through turbid media
(170.1065) Medical optics and biotechnology : Acousto-optics

ToC Category:
Imaging Systems

History
Original Manuscript: January 29, 2014
Revised Manuscript: March 13, 2014
Manuscript Accepted: April 15, 2014
Published: April 25, 2014

Virtual Issues
Vol. 9, Iss. 7 Virtual Journal for Biomedical Optics

Citation
Fabrice Devaux, Jean-Pierre Huignard, and François Ramaz, "Modelization and optimized speckle detection scheme in photorefractive self-referenced acousto-optic imaging," Opt. Express 22, 10682-10692 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-9-10682


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999). [CrossRef]
  2. A. Bratchenia, R. Molenaar, T. G. van Leeuwen, R. P. H. Kooyman, “Acousto-optic-assisted diffuse optical tomography,” Opt. Lett. 36, 1539–1541 (2011). [CrossRef] [PubMed]
  3. L. Wang, S. L. Jacques, X. Zhao, “Continuous-wave ultrasonic modulation of scattered laser light to image objects in turbid media,” Opt. Lett. 20, 629–631 (1995). [CrossRef] [PubMed]
  4. G. Rousseau, A. Blouin, J.-P. Monchalin, “Ultrasound modulated optical imaging using a high-power pulsed laser and a double-pass confocal Fabry-Perot interferometer,” Opt. Lett. 34, 3445–3447 (2009). [CrossRef] [PubMed]
  5. X. Xu, S.-R. Kothapalli, H. Liu, L. V. Wang, “Spectral hole burning for ultrasound-modulated optical tomography of thick tissue,” J. Biomed. Opt. 15, 066018 (2010). [CrossRef]
  6. M. Gross, P. Goy, M. Al-Koussa, “Shot-noise detection of ultrasound-tagged photons in ultrasound-modulated optical imaging,” Opt. Lett. 28, 2482–2484 (2003). [CrossRef] [PubMed]
  7. E. Benoit à la Guillaume, S. Farahi, E. Bossy, M. Gross, F. Ramaz, “Acousto-optical coherence tomography with a digital holographic detection scheme,” Opt. Lett. 37, 3216–3218 (2012). [CrossRef] [PubMed]
  8. A. Lev, B. Sfez, “In vivo demonstration of the ultrasound-modulated light technique,” J. Opt. Soc. Am. A 20, 2347–2354 (2003). [CrossRef]
  9. S. Farahi, E. Benoit à la Guillaume, A. A. Grabar, J.-P. Huignard, F. Ramaz, “Time resolved three-dimensional acousto-optic imaging of thick scattering media,” Opt. Lett. 37, 2754–2756 (2012). [CrossRef] [PubMed]
  10. M. Lesaffre, F. Jean, F. Ramaz, A. C. Boccara, P. Delaye, G. Roosen, “In situ monitoring of the photorefractive response time in a self-adaptive holography setup developed for acousto-optic imaging,” Opt. Express 15, 1030–1042 (2007). [CrossRef] [PubMed]
  11. A. A. Kamshilin, T. Jaaskelainen, Y. N. Kulchin, “Adaptive correlation filter for stabilization of interference fiber optic sensors,” Appl. Phys. Lett. 73, 705–707 (1998). [CrossRef]
  12. E. Benoit à la Guillaume, U. Bortolozzo, J. P. Huignard, S. Residori, F. Ramaz, “Dynamic ultrasound modulated optical tomography by self-referenced photorefractive holography,” Opt. Lett. 38, 287–289 (2013). [CrossRef] [PubMed]
  13. P. Yeh, Introduction to Photorefractive Nonlinear Optics (John Wiley, 1993).
  14. O. Daniel, J.-M. C. Jonathan, G. Roosen, “Photorefractrive effect in the Fourier plane,” Opt. Mater. 4, 294–298 (1995). [CrossRef]
  15. O. Daniel, A. Stelmach, J.-M. C. Jonathan, G. Roosen, “Whole-beam method analysis of photorefractive effect in correlators,” Opt. Commun. 113, 559–567 (1995). [CrossRef]
  16. J. A. Gómez, H. Lorduy Gómez, Á. Salazar, “Novel procedure for the simultaneous determination of the Debye length and electro-optic coefficient for an optically active photorefractive Bi12SiO20 crystal,” Opt. Commun. 284, 460–466 (2011). [CrossRef]
  17. J. W. Goodman, Laser Speckle and Related Phenomena (Springer, 1975).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited