OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 9 — May. 5, 2014
  • pp: 10693–10702

Magnetic dipole radiation tailored by substrates: numerical investigation

D. L. Markovich, P. Ginzburg, A. K. Samusev, P. A. Belov, and A. V. Zayats  »View Author Affiliations


Optics Express, Vol. 22, Issue 9, pp. 10693-10702 (2014)
http://dx.doi.org/10.1364/OE.22.010693


View Full Text Article

Enhanced HTML    Acrobat PDF (5801 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Nanoparticles of high refractive index materials can possess strong magnetic polarizabilities and give rise to artificial magnetism in the optical spectral range. While the response of individual dielectric or metal spherical particles can be described analytically via multipole decomposition in the Mie series, the influence of substrates, in many cases present in experimental observations, requires different approaches. Here, the comprehensive numerical studies of the influence of a substrate on the spectral response of high-index dielectric nanoparticles were performed. In particular, glass, perfect electric conductor, gold, and hyperbolic metamaterial substrates were investigated. Optical properties of nanoparticles were characterized via scattering cross-section spectra, electric field profiles, and induced electric and magnetic moments. The presence of substrates was shown to have significant impact on particle’s magnetic resonances and resonant scattering cross-sections. Variation of substrate material provides an additional degree of freedom in tailoring optical properties of magnetic multipoles, important in many applications.

© 2014 Optical Society of America

OCIS Codes
(230.5750) Optical devices : Resonators
(260.2110) Physical optics : Electromagnetic optics
(290.5850) Scattering : Scattering, particles
(160.3918) Materials : Metamaterials
(250.5403) Optoelectronics : Plasmonics
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Scattering

History
Original Manuscript: February 18, 2014
Manuscript Accepted: April 2, 2014
Published: April 25, 2014

Citation
D. L. Markovich, P. Ginzburg, A. K. Samusev, P. A. Belov, and A. V. Zayats, "Magnetic dipole radiation tailored by substrates: numerical investigation," Opt. Express 22, 10693-10702 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-9-10693


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. J. Polydoroff, W. Polydoroff, High-Frequency Magnetic Materials: Their Characteristics and Principal Applications, (Wiley, 1960).
  2. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000). [CrossRef] [PubMed]
  3. N. I. Zheludev, “The road ahead for metamaterials,” Science 328, 582–583 (2010). [CrossRef] [PubMed]
  4. C. M. Soukoulis, M. Wegener, “Optical metamaterials — more bulky and less lossy,” Science 330, 16011 (2010). [CrossRef]
  5. A. Boltasseva, H. A. Atwater, “Low-loss plasmonic metamaterials,” Science 331, 290–291 (2011). [CrossRef] [PubMed]
  6. V. M. Shalaev, “Optical negative-index metamaterials,” Nature Photon. 1, 41–48 (2007). [CrossRef]
  7. I. P. Radko, S. I. Bozhevolnyi, A. B. Evlyukhin, A. Boltasseva, “Surface plasmon polariton beam focusing with parabolic nanoparticle chains,” Opt. Express 15, 6576–6582 (2007). [CrossRef] [PubMed]
  8. P. Ginzburg, N. Amir, N. Berkovitch, A. Normatov, G. Lerman, A. Yanai, U. Levy, M. Orenstein, “Plasmonic resonance effects for tandem receiving-transmitting nano-antennas,” Nano Lett. 11, 220–224 (2011). [CrossRef]
  9. A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010). [CrossRef] [PubMed]
  10. A. V. Zayats, I. I. Smolyaninov, A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–134 (2005). [CrossRef]
  11. S. A. Maier, P. G. Kik, H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: estimation of waveguide loss,” Appl. Phys. Lett. 81, 1714 (2002). [CrossRef]
  12. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nature Materials 7, 442–453 (2008). [CrossRef] [PubMed]
  13. A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Lukyanchuk, B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82, 045404 (2010). [CrossRef]
  14. A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, Yu. S. Kivshar, “All-dielectric optical nanoantennas,” Opt. Express 20, 20599–20604 (2012). [CrossRef] [PubMed]
  15. A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012). [CrossRef] [PubMed]
  16. A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012). [CrossRef] [PubMed]
  17. Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013). [CrossRef] [PubMed]
  18. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles, (Wiley-VCH, 1998). [CrossRef]
  19. P. Hammond, “Electric and magnetic images,” Proc. IEE 107C, 306–313 (1960).
  20. J. A. Fan, K. Bao, J. B. Lassiter, J. Bao, N. J. Halas, P. Nordlander, F. Capasso, “Near-normal incidence dark-field microscopy: applications to nanoplasmonic spectroscopy,” Nano Lett. 12, 2817–2821, (2012). [CrossRef] [PubMed]
  21. N. Berkovitch, P. Ginzburg, M. Orenstein, “Nano-plasmonic antennas in the near infrared regime,” J. Phys.: Condens. Matter 24, 073202 (2012).
  22. F. Moreno, J. M. Saiz, F. Gonzlez, “Light scattering by particles on substrates. Theory and experiments,” in Light Scattering and Nanoscale Surface Roughness Nanostructure Science and Technology, A. A. Maradudin, ed. (Springer, 2007), pp. 305–340. [CrossRef]
  23. J. L. de la Pena, F. Gonzales, J. M. Saiz, P. J. Valle, F. Moreno, “Sizing particles on substrates: a general method foe oblique incidence,” J. Appl. Phys. 85, 432–438 (1999) [CrossRef]
  24. P. A. Bobbert, J. Vlieger, “Light scattering by a sphere on a substrate,” Phys. A 137, 243–257 (1986) [CrossRef]
  25. I. V. Lindell, J. J. Hanninen, K. I. Nikoskinen, “Electrostatic image theory for an anisotropic boundary,” IEE Proceedings, 151, 188–194 (2004).
  26. A. E. Krasnok, D. S. Filonov, A. P. Slobozhanyuk, P. A. Belov, C. R. Simovski, Yu. S. Kivshar, “Superdirective magnetic nanoantennas with effect of light steering: theory and experiment,” IMOC, 1–3, (2013).
  27. A. Taflove, S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, (Artech House, 2005).
  28. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  29. P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379, (1972). [CrossRef]
  30. M. Albooyeh, C. R. Simovski, “Substrate-induced bianisotropy in plasmonic grids,” J. Opt. 13105102 (2011). [CrossRef]
  31. V. Klimov, S. Shulin, G.-Y. Guo, “Coherent perfect nanoabsorbers based on negative refraction,” Opt. Express 20, 13081 (2012). [CrossRef]
  32. G.-Y. Guo, V. Klimov, S. Shulin, W.-J. Zheng, “Metamaterial slab-based super-absorbers and perfect nanodetectors for single dipole sources,” Opt. Express 21, 11338–11348 (2013). [CrossRef] [PubMed]
  33. P. Ginzburg, A. V. Krasavin, A. N. Poddubny, P. A. Belov, Yu. S. Kivshar, A. V. Zayats, “Self-induced torque in hyperbolic metamaterials,” Phys. Rev. Lett. 111, 036804 (2013). [CrossRef] [PubMed]
  34. P. V. Kapitanova, P. Ginzburg, F. J. Rodrguez-Fortuo, D. S. Filonov, P. A. Belov, A. N. Poddubny, Yu. S. Kivshar, G. A. Wurtz, A. V. Zayats, “Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes,” Nat. Commun. 5, 3226 (2014). [CrossRef] [PubMed]
  35. A. N. Poddubny, I. Iorsh, P. A. Belov, Yu. S. Kivshar, “Hyperbolic metamaterials,” Nat. Photon. 7, 1038 (2013). [CrossRef]
  36. Ya. B. Fainberg, N. A. Khizhnyak, “Artificial anisotropic media,” JETP 25, 711 (1955).
  37. A. A. Orlov, P. M. Voroshilov, P. A. Belov, Yu. S. Kivshar, “Engineered optical nonlocality in nanostructured metamaterials,” Phys. Rev. B 84, 045424 (2011). [CrossRef]
  38. A. V. Chebykin, A. A. Orlov, C. R. Simovski, Yu. S. Kivshar, P. A. Belov, “Nonlocal effective parameters of multilayered metal-dielectric metamaterials,” Phys. Rev. B 86, 115420 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited