OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 9 — May. 5, 2014
  • pp: 10710–10715

Monolithic silicon waveguide photodiode utilizing surface-state absorption and operating at 10 Gb/s

Jason J. Ackert, Abdullah S. Karar, John C. Cartledge, Paul E. Jessop, and Andrew P. Knights  »View Author Affiliations


Optics Express, Vol. 22, Issue 9, pp. 10710-10715 (2014)
http://dx.doi.org/10.1364/OE.22.010710


View Full Text Article

Enhanced HTML    Acrobat PDF (902 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have fabricated a waveguide integrated monolithic silicon infrared detector. The photodiode consists of a p-i-n junction across a silicon-on-insulator (SOI) rib waveguide. Absorption is due to surface-states at the silicon/air interface of the waveguide. A 2 mm long detector shows a response of 0.045 A/W (calculated as a function of coupled light) and is capable of operation at 10 Gb/s at a reverse bias voltage of 2 V.

© 2014 Optical Society of America

OCIS Codes
(040.5160) Detectors : Photodetectors
(040.6040) Detectors : Silicon
(130.0130) Integrated optics : Integrated optics
(230.7370) Optical devices : Waveguides

ToC Category:
Detectors

History
Original Manuscript: March 25, 2014
Revised Manuscript: April 18, 2014
Manuscript Accepted: April 19, 2014
Published: April 25, 2014

Citation
Jason J. Ackert, Abdullah S. Karar, John C. Cartledge, Paul E. Jessop, and Andrew P. Knights, "Monolithic silicon waveguide photodiode utilizing surface-state absorption and operating at 10 Gb/s," Opt. Express 22, 10710-10715 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-9-10710


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Hochberg, T. Baehr-Jones, “Towards fabless silicon photonics,” Nature Phot. 4(8), 492–494 (2010). [CrossRef]
  2. R. Beausoleil, “Large-scale integrated photonics for high-performance interconnects,” ACM J. Emerg. Technol. 7(2), Article 6 (2011).
  3. C. Lee, J. Thillaigovindan, “Optical nanomechanical sensor using a silicon photonic crystal cantilever embedded with a nanocavity resonator,” Appl. Opt. 48(10), 1797–1803 (2009). [CrossRef] [PubMed]
  4. S. Janz, D.-X. Xu, M. Vachon, N. Sabourin, P. Cheben, H. McIntosh, H. Ding, S. Wang, J. H. Schmid, A. Delâge, J. Lapointe, A. Densmore, R. Ma, W. Sinclair, S. M. Logan, R. Mackenzie, Q. Y. Liu, D. Zhang, G. Lopinski, O. Mozenson, M. Gilmour, H. Tabor, “Photonic wire biosensor microarray chip and instrumentation with application to serotyping of Escherichia coli isolates,” Opt. Express 21(4), 4623–4637 (2013). [CrossRef] [PubMed]
  5. J. T. Robinson, L. Chen, M. Lipson, “On-chip gas detection in silicon optical microcavities,” Opt. Express 16(6), 4296–4301 (2008). [CrossRef] [PubMed]
  6. J. Michel, J. Liu, L. C. Kimerling, “High performance Ge-on-Si photodetectors,” Nature Phot. 4(8), 527–534 (2010). [CrossRef]
  7. M. W. Geis, S. J. Spector, M. E. Grein, J. U. Yoon, D. M. Lennon, T. M. Lyszczarz, “Silicon waveguide infrared photodiodes with >35 GHz bandwidth and phototransistors with 50 AW-1 response,” Opt. Express 17(7), 5193–5204 (2009). [CrossRef] [PubMed]
  8. J. J. Ackert, A. S. Karar, D. J. Paez, P. E. Jessop, J. C. Cartledge, A. P. Knights, “10 Gbps silicon waveguide-integrated infrared avalanche photodiode,” Opt. Express 21(17), 19530–19537 (2013). [CrossRef] [PubMed]
  9. R. R. Grote, K. Padmaraju, B. Souhan, J. B. Driscoll, K. Bergman, R. M. Osgood., “10 Gb/s error-free operation of all-silicon ion-implanted-waveguide photodiodes at 1.55 µm,” IEEE Photon. Technol. Lett. 25(1), 67–70 (2013). [CrossRef]
  10. B. Souhan, C. P. Chen, R. R. Grote, J. B. Driscoll, N. Ophir, K. Bergman, R. M. Osgood, “Error free operation of an all-Si waveguide photodiode at 1.9 µm,” IEEE Photon. Technol. Lett. 25(21), 2031–2034 (2013). [CrossRef]
  11. H. Chen, A. W. Poon, “Two-photon absorption photocurrent in p-i-n embedded silicon microdisk resonators,” Appl. Phys. Lett. 96(19), 191106 (2010). [CrossRef]
  12. T. Baehr-Jones, M. Hochberg, A. Scherer, “Photodetection in silicon beyond the band edge with surface states,” Opt. Express 16(3), 1659–1668 (2008). [CrossRef] [PubMed]
  13. F. Morichetti, S. Grillanda, M. Carminati, G. Ferrari, M. Sampietro, M. J. Strain, M. Sorel, A. Melloni, “Non-Invasive on-chip light observation by contactless waveguide conductivity monitoring,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201710 (2014). [CrossRef]
  14. F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 19(23), 1919–1921 (2007). [CrossRef]
  15. A. B. Sproul, “Dimensionless solution of the equation describing the effect of surface recombination on carrier decay in semiconductors,” J. Appl. Phys. 76(5), 2851 (1994). [CrossRef]
  16. K. Padmaraju, D. F. Logan, X. Zhu, J. J. Ackert, A. P. Knights, K. Bergman, “Integrated thermal stabilization of a microring modulator,” Opt. Express 21(12), 14342–14350 (2013). [CrossRef] [PubMed]
  17. A. Densmore, D. X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delage, B. Lamontagne, J. H. Schmid, E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18(23), 2520–2522 (2006). [CrossRef]
  18. F. Dell’Olio, V. M. Passaro, “Optical sensing by optimized silicon slot waveguides,” Opt. Express 15(8), 4977–4993 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited