OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 9 — May. 5, 2014
  • pp: 10716–10727

Monolithic multi-functional integration of ROADM modules based on polymer photonic lightwave circuit

Changming Chen, Xiaoyan Niu, Chao Han, Zuosen Shi, Xinbin Wang, Xiaoqiang Sun, Fei Wang, Zhanchen Cui, and Daming Zhang  »View Author Affiliations


Optics Express, Vol. 22, Issue 9, pp. 10716-10727 (2014)
http://dx.doi.org/10.1364/OE.22.010716


View Full Text Article

Enhanced HTML    Acrobat PDF (2772 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A transparent reconfigurable optical add-drop multiplexer (ROADM) module composed of AWG-based wavelength-channel-selectors monolithically integrated with Mach-Zehnder interferometer (MZI) thermo-optic (TO) waveguide switch arrays and arrayed waveguide true-time-delay (TTD) lines is designed and fabricated using polymer photonic lightwave circuit technology. Negative-type fluorinated photoresist and grafting modified organic-inorganic hybrid materials were synthesized as the waveguide core and cladding, respectively. The one-chip transmission loss is ~6 dB and the crosstalk is less than ~30 dB for the transverse-magnetic (TM) mode. The actual maximum modulation depths of different thermo-optic switches are similar, ~15.5 dB with 1.9 V bias. The maximum power consumption of a single switch is less than 10 mW. The delay time basic increments are measured from 140 ps to 20 ps. Proposed novel ROADM is flexible and scalable for the dense wavelength division multiplexing network.

© 2014 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(250.5300) Optoelectronics : Photonic integrated circuits
(160.5335) Materials : Photosensitive materials
(130.5460) Integrated optics : Polymer waveguides

ToC Category:
Integrated Optics

History
Original Manuscript: March 10, 2014
Revised Manuscript: April 18, 2014
Manuscript Accepted: April 18, 2014
Published: April 25, 2014

Citation
Changming Chen, Xiaoyan Niu, Chao Han, Zuosen Shi, Xinbin Wang, Xiaoqiang Sun, Fei Wang, Zhanchen Cui, and Daming Zhang, "Monolithic multi-functional integration of ROADM modules based on polymer photonic lightwave circuit," Opt. Express 22, 10716-10727 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-9-10716


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C.-M. Tsai, H. Taga, C.-H. Yang, Y.-L. Lo, T.-C. Liang, “Demonstration of a ROADM using cyclic AWGs,” J. Lightwave Technol. 29(18), 2780–2784 (2011). [CrossRef]
  2. J.-U. Shin, Y.-T. Han, S.-P. Han, S.-H. Park, Y. Baek, Y.-O. Noh, P. Kang-hee, “Reconfigurable optical add-drop multiplexer using a polymer integrated photonic lightwave circuit,” ETRI 31(6), 770–777 (2009). [CrossRef]
  3. C. M. Tsai, Y. L. Lo, “Fiber-grating add–drop reconfigurable multiplexer with multi-channel using in bidirectional optical network,” Opt. Fiber Technol. 13(3), 260–266 (2007). [CrossRef]
  4. J. S. Cho, Y. K. Seo, H. Yoo, P. K. J. Park, J. K. Rhee, Y. H. Won, M. H. Kang, “Optical burst add-drop multiplexing technique for sub-wavelength granularity in wavelength multiplexed ring networks,” Opt. Express 15(20), 13256–13265 (2007). [CrossRef] [PubMed]
  5. V. Tran, W. D. Zhong, R. S. Tucker, K. Song, “Reconfigurable multichannel optical add–drop multiplexers incorporating eight-port optical circulators and fibre Bragg gratings,” IEEE Photon. Technol. Lett. 13(10), 1100–1102 (2001). [CrossRef]
  6. Y.-T. Han, J.-U. Shin, S.-H. Park, J.-K. Seo, H.-J. Lee, W.-Y. Hwang, H.-H. Park, Y. Baek, “2×2 polymer thermo-optic digital optical switch using total-internal-reflection in bend-free waveguides,” IEEE Photon. Technol. Lett. 24(19), 1757–1760 (2012). [CrossRef]
  7. T. Claes, W. Bogaerts, P. Bienstman, “Vernier-cascade label-free biosensor with integrated arrayed waveguide grating for wavelength interrogation with low-cost broadband source,” Opt. Lett. 36(17), 3320–3322 (2011). [CrossRef] [PubMed]
  8. Y.-T. Han, J.-U. Shin, S.-H. Park, S.-P. Han, Y. Baek, C.-H. Lee, Y.-O. Noh, H.-J. Lee, H.-H. Park, “Fabrication of 10-channel polymer thermo-optic digital optical switch array,” IEEE Photon. Technol. Lett. 21(20), 1556–1558 (2009). [CrossRef]
  9. T. Segawa, S. Matsuo, T. Kakitsuka, Y. Shibata, T. Sato, Y. Kawaguchi, Y. Kondo, R. Takahashi, “All-optical wavelength-routing switch with monolithically integrated filter-free tunable wavelength converters and an AWG,” Opt. Express 18(5), 4340–4345 (2010). [CrossRef] [PubMed]
  10. Q. Fang, J. Song, G. Zhang, M. Yu, Y. Liu, G.-Q. Lo, D.-L. Kwong, “Monolithic integration of a multiplexer/demultiplexer with a thermo-optic VOA array on an SOI platform,” IEEE Photon. Technol. Lett. 21(5), 319–321 (2009). [CrossRef]
  11. A. Yeniay, R. Gao, “True time delay photonic circuit based on perfluorpolymer waveguides,” IEEE Photon. Technol. Lett. 22(21), 1565–1567 (2010). [CrossRef]
  12. M. Oguma, S. Kamei, T. Kitoh, T. Hashimoto, Y. Sakamaki, M. Itoh, H. Takahashi, “Wide passband tandem MZI-synchronized AWG empolying mode converter and multimode waveguide,” IEICE Electron. Express 7(11), 823–826 (2010). [CrossRef]
  13. T. Segawa, S. Matsuo, T. Kakitsuka, Y. Shibata, T. Sato, Y. Kawaguchi, Y. Kondo, R. Takahashi, “All-optical wavelength-routing switch with monolithically integrated filter-free tunable wavelength converters and an AWG,” Opt. Express 18(5), 4340–4345 (2010). [CrossRef] [PubMed]
  14. D. Dai, J. Bauter, J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-re1ciprocity and loss reduction,” Light: Science and Applications 1(3), e1 (2012), doi:. [CrossRef]
  15. F. Bontempi, S. Faralli, N. Andriolli, G. Contestabile, “An InP monolithically integrated unicast and multicast wavelength converter,” Photon. Technol. Lett 25(22), 2178–2181 (2013). [CrossRef]
  16. N. Andriolli, S. Faralli, F. Bontempi, G. Contestabile, “A wavelength-preserving photonic integrated regenerator for NRZ and RZ signals,” Opt. Express 21(18), 20649–20655 (2013). [CrossRef] [PubMed]
  17. N. Andriolli, S. Faralli, X. J. M. Leijtens, J. Bolk, G. Contestabile, “Monolithically integrated all-optical regenerator for constant envelope WDM signals,” IEEE J. Lightw. Technol 31(2), 322–327 (2013). [CrossRef]
  18. F. Bontempi, S. Pinna, N. Andriolli, A. Bogoni, X. J. M. Leijtens, J. Bolk, G. Contestabile, “Multifunctional current-controlled InP photonic integrated delay interferometer,” IEEE J. Quantum Electron. 48(11), 1453–1461 (2012). [CrossRef]
  19. S. C. Nicholes, M. L. Masanovic, B. Jevremović, E. Lively, L. A. Coldren, D. J. Blumenthal, “An 8×8 InP monolithic tunable optical router (motor) packet forwarding chip,” J. Lightwave Technol. 28(4), 641–650 (2010). [CrossRef]
  20. D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top Quantum Electron. 13, 22–31 (2007).
  21. J. Wang, M. Kroh, T. Richter, A. Theurer, A. Matiss, C. Zawadzki, Z. Zhang, C. Schubert, A. Steffan, N. Grote, N. Keil, “Hybrid-integrated polarization diverse coherent receiver based on polymer PLC,” IEEE Photon. Technol. Lett. 24(19), 1718–1721 (2012). [CrossRef]
  22. R. Li, T. Zhang, Y. Yu, Y. Jiang, X. Zhang, L. Wang, “Physical flexible multilayer substrate based optical waveguides,” Sens. Actuators A Phys. 209(20), 57–61 (2014). [CrossRef]
  23. N. Bamiedakis, J. Beals, R. V. Penty, I. H. White, J. V. DeGroot, T. V. Clapp, “Cost-effective multimode polymer waveguides for high-speed on-board optical interconnects,” IEEE J. Quantum Electron. 45(4), 415–424 (2009). [CrossRef]
  24. T. Gorman, S. Haxha, J. J. Ju, “Ultra-high-speed deeply etched electrooptic polymer modulator with profiled cross section,” IEEE J. Lightw. Technol 27(1), 68–76 (2009). [CrossRef]
  25. C. Chen, F. Zhang, H. Wang, X. Sun, F. Wang, Z. Cui, D. Zhang, “UV curable electro-optic polymer switch based on direct photodefinition technique,” IEEE J. Quantum Electron. 47(7), 959–964 (2011). [CrossRef]
  26. L. R. Dalton, P. A. Sullivan, D. H. Bale, “Electric field poled organic electro-optic materials: state of the art and future prospects,” Chem. Rev. 110(1), 25–55 (2010). [CrossRef] [PubMed]
  27. C. Chen, X. Sun, F. Wang, F. Zhang, H. Wang, Z. Shi, Z. Cui, D. Zhang, “Electro-optic modulator based on novel organic-inorganic hybrid nonlinear optical materials,” IEEE J. Quantum Electron. 48(1), 61–66 (2012). [CrossRef]
  28. J.-D. Shin, B.-S. Lee, B.-G. Kim, “Optical true time-delay feeder for X-band phased array antennas composed of 2×2 optical MEMS switches and fiber delay lines,” IEEE Photon. Technol. Lett. 16(5), 1364–1366 (2004). [CrossRef]
  29. C. Chen, Y. Yi, F. Wang, Y. Yan, X. Sun, D. Zhang, “Ultra long compact optical polymeric array waveguide true-time-delay line devices,” IEEE J. Quantum Electron. 46(5), 754–761 (2010). [CrossRef]
  30. G. Hu, Y. Cui, B. Yun, C. Lu, Z. Wang, “A polymeric optical switch array based on arrayed waveguide grating structure,” Opt. Commun. 279(1), 79–82 (2007). [CrossRef]
  31. Y. Wan, X. Fei, Z. Shi, J. Hu, X. Zhang, L. Zhao, C. Chen, Z. Cui, D. Zhang, “Highly Fluorinated Low-Molecular-Weight Photoresists for Optical Waveguides,” J. Polym. Sci. A Polym. Chem. 49(3), 762–769 (2011). [CrossRef]
  32. C. Chen, C. Han, L. Wang, H. Zhang, X. Sun, F. Wang, D. Zhang, “650 nm all-polymer Thermo-optic waveguide switch arrays based on novel organic-inorganic grafting PMMA materials,” IEEE J. Quantum Electron. 49(5), 61–66 (2013). [CrossRef]
  33. K. Kawano, Introduction to Optical Waveguide Analysis: Solving Maxwell’s Equations and the Schrödinger Equations (Wiley 2001).
  34. Y. Zhang, X. Wu, Z. He, L. Liu, L. Xu, “Compact asymmetric 1×2 multimode interference optical switch,” J. Opt. A, Pure Appl. Opt. 11(10), 105401 (2009). [CrossRef]
  35. K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, A. Pitilakis, O. Tsilipakos, E. E. Kriezis, “Thermo-optic plasmo-photonic mode interference switches based on dielectric loaded waveguides,” Appl. Phys. Lett. 99(24), 241110 (2011). [CrossRef]
  36. B. Howley, Y. Chen, X. Wang, Q. Zhou, Z. Shi, Y. Jiang, R. T. Chen, “2-bit reconfigurable true time delay line using 2×2 polymer waveguide switches,” IEEE Photon. Technol. Lett. 25(9), 1944–1946 (2005). [CrossRef]
  37. X. Wang, B. Howley, M. Y. Chen, R. T. Chen, “Phase error corrected 4-bit true time delay module using a cascaded 2 x 2 polymer waveguide switch array,” Appl. Opt. 46(3), 379–383 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited