OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 9 — May. 5, 2014
  • pp: 10735–10746

Multi-meter fiber-delivery and pulse self-compression of milli-Joule femtosecond laser and fiber-aided laser-micromachining

B. Debord, M. Alharbi, L. Vincetti, A. Husakou, C. Fourcade-Dutin, C. Hoenninger, E. Mottay, F. Gérôme, and F. Benabid  »View Author Affiliations


Optics Express, Vol. 22, Issue 9, pp. 10735-10746 (2014)
http://dx.doi.org/10.1364/OE.22.010735


View Full Text Article

Enhanced HTML    Acrobat PDF (5384 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on damage-free fiber-guidance of milli-Joule energy-level and 600-femtosecond laser pulses into hypocycloid core-contour Kagome hollow-core photonic crystal fibers. Up to 10 meter-long fibers were used to successfully deliver Yb-laser pulses in robustly single-mode fashion. Different pulse propagation regimes were demonstrated by simply changing the fiber dispersion and gas. Self-compression to ~50 fs, and intensity-level nearing petawatt/cm2 were achieved. Finally, free focusing-optics laser-micromachining was also demonstrated on different materials.

© 2014 Optical Society of America

OCIS Codes
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(320.7090) Ultrafast optics : Ultrafast lasers
(350.3390) Other areas of optics : Laser materials processing
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Laser Microfabrication

History
Original Manuscript: March 19, 2014
Revised Manuscript: April 18, 2014
Manuscript Accepted: April 22, 2014
Published: April 25, 2014

Citation
B. Debord, M. Alharbi, L. Vincetti, A. Husakou, C. Fourcade-Dutin, C. Hoenninger, E. Mottay, F. Gérôme, and F. Benabid, "Multi-meter fiber-delivery and pulse self-compression of milli-Joule femtosecond laser and fiber-aided laser-micromachining," Opt. Express 22, 10735-10746 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-9-10735


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Gu, D. Bird, D. Day, L. Fu, and D. Morrish, “Femtosecond Biophotonics, core technology and applications,” Cambridge university press (2010).
  2. B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996). [CrossRef]
  3. C. L. Hoy, O. Ferhanoğlu, M. Yildirim, W. Piyawattanametha, H. Ra, O. Solgaard, A. Ben-Yakar, “Optical design and imaging performance testing of a 9.6-mm diameter femtosecond laser microsurgery probe,” Opt. Express 19(11), 10536–10552 (2011). [CrossRef] [PubMed]
  4. X. Liu, D. Du, G. Mourou, “Laser Ablation and Micromachining with Ultrashort Laser Pulses,” IEEE J. Quantum Electron. 33(10), 1706–1716 (1997). [CrossRef]
  5. R. R. Gattass, E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008). [CrossRef]
  6. H. K. Soong, J. B. Malta, “Femtosecond lasers in ophthalmology,” Am. J. Ophthalmol. 147(2), 189–197 (2009). [CrossRef] [PubMed]
  7. M. H. Niemz, A. Kasenbacher, M. Strassl, A. Bäcker, A. Beyertt, D. Nickel, A. Giesen, “Tooth ablationusing a CPA-free thin disk femtosecond laser system,” Appl. Phys. B 79(3), 269–271 (2004). [CrossRef]
  8. R. G. McCaughey, H. Sun, V. S. Rothholtz, T. Juhasz, B. J. F. Wong, “Femtosecond laser ablation of the stapes,” J. Biomed. Opt. 14(2), 024040 (2009). [CrossRef] [PubMed]
  9. X. Peng, M. Mielke, T. Booth, “High average power, high energy 1.55 μm ultra-short pulse laser beam delivery using large mode area hollow core photonic band-gap fiber,” Opt. Express 19(2), 923–932 (2011). [CrossRef] [PubMed]
  10. G. Humbert, J. C. Knight, G. Bouwmans, P. St. J. Russell, D. P. Williams, P. J. Roberts, B. J. Mangan, “Hollow core photonic crystal fibers for beam delivery,” Opt. Express 12(8), 1477–1484 (2004). [CrossRef] [PubMed]
  11. J. A. West, C. M. Smith, N. F. Borrelli, D. C. Allan, K. W. Koch, “Surface modes in air-core photonic band-gap fibers,” Opt. Express 12(8), 1485–1496 (2004). [CrossRef] [PubMed]
  12. Y. Y. Wang, X. Peng, M. Alharbi, C. F. Dutin, T. D. Bradley, F. Gérôme, M. Mielke, T. Booth, F. Benabid, “Design and fabrication of hollow-core photonic crystal fibers for high-power ultrashort pulse transportation and pulse compression,” Opt. Lett. 37(15), 3111–3113 (2012). [CrossRef] [PubMed]
  13. F. Couny, F. Benabid, P. J. Roberts, P. S. Light, M. G. Raymer, “Generation and Photonic Guidance of Multi-Octave Optical-Frequency Combs,” Science 318(5853), 1118–1121 (2007). [CrossRef] [PubMed]
  14. Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36(5), 669–671 (2011). [CrossRef] [PubMed]
  15. T. D. Bradley, Y. Y. Wang, M. Alharbi, B. Debord, C. Fourcade-Dutin, B. Beaudou, F. Gérôme, F. Benabid, “Optical Properties of Low Loss (70dB/km) Hypocycloid-Core Kagome Hollow Core Photonic Crystal Fiber for Rb and Cs Based Optical Applications,” J. Lightwave Technol. 31(16), 3052–3055 (2013). [CrossRef]
  16. B. Debord, M. Alharbi, T. Bradley, C. Fourcade-Dutin, Y. Y. Wang, L. Vincetti, F. Gérôme, F. Benabid, “Hypocycloid-shaped hollow-core photonic crystal fiber Part I: Arc curvature effect on confinement loss,” Opt. Express 21(23), 28597–28608 (2013). [CrossRef] [PubMed]
  17. S. Selleri, L. Vincetti, A. Cucinotta, M. Zoboli, “Complex FEM modal solver of optical waveguides with PML boundary conditions,” Opt. Quantum Electron. 33(4/5), 359–371 (2001). [CrossRef]
  18. J. Sun, J. P. Longtin, “Inert gas beam delivery for ultrafast laser micromachining at ambient pressure,” J. Appl. Phys. 89(12), 8219 (2001). [CrossRef]
  19. F. Benabid, J. C. Knight, G. Antonopoulos, P. St. J. Russell, “Stimulated Raman Scattering in Hydrogen-Filled Hollow-Core Photonic Crystal Fiber,” Science 298(5592), 399–402 (2002). [CrossRef] [PubMed]
  20. A. V. Husakou, J. Herrmann, “Supercontinuum Generation of Higher-Order Solitons by Fission in Photonic Crystal Fibers,” Phys. Rev. Lett. 87(20), 203901 (2001). [CrossRef] [PubMed]
  21. M. V. Ammosov, N. B. Delone, V. B. Krainov, “Tunnel ionization of complex atoms of atomic ions in an alternating electromagnetic field,” Sov. Phys. JEPT 64, 1191–1194 (1986).
  22. D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003). [CrossRef] [PubMed]
  23. G. Machinet, B. Debord, R. Kling, J. Lopez, F. Gérôme, F. Benabid, and P. Dupriez, “High average power and high energy transport of femtosecond pulses with a low loss Kagome hollow-core photonic crystal fiber for micromachining,” CLEO Europe, CJ-11.2 THU (2013).
  24. P. Jaworski, F. Yu, R. R. Maier, W. J. Wadsworth, J. C. Knight, J. D. Shephard, D. P. Hand, “Picosecond and nanosecond pulse delivery through a hollow-core Negative Curvature Fiber for micro-machining applications,” Opt. Express 21(19), 22742–22753 (2013). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MOV (1407 KB)     
» Media 2: MOV (6430 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited