OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 9 — May. 5, 2014
  • pp: 10775–10791

Continuous phase estimation from noisy fringe patterns based on the implicit smoothing splines

Maciek Wielgus, Krzysztof Patorski, Pablo Etchepareborda, and Alejandro Federico  »View Author Affiliations


Optics Express, Vol. 22, Issue 9, pp. 10775-10791 (2014)
http://dx.doi.org/10.1364/OE.22.010775


View Full Text Article

Enhanced HTML    Acrobat PDF (2690 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We introduce the algorithm for the direct phase estimation from the single noisy interferometric pattern. The method, named implicit smoothing spline (ISS), can be regarded as a formal generalization of the smoothing spline interpolation for the case when the interpolated data is given implicitly. We derive the necessary equations, discuss the properties of the method and address its application for the direct estimation of the continuous phase in both classical interferometry and digital speckle pattern interferometry (DSPI). The numerical illustrations of the algorithm performance are provided to corroborate the high quality of the results.

© 2014 Optical Society of America

OCIS Codes
(100.5070) Image processing : Phase retrieval
(120.2650) Instrumentation, measurement, and metrology : Fringe analysis
(120.3940) Instrumentation, measurement, and metrology : Metrology
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(120.6160) Instrumentation, measurement, and metrology : Speckle interferometry

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: January 23, 2014
Revised Manuscript: April 8, 2014
Manuscript Accepted: April 10, 2014
Published: April 28, 2014

Citation
Maciek Wielgus, Krzysztof Patorski, Pablo Etchepareborda, and Alejandro Federico, "Continuous phase estimation from noisy fringe patterns based on the implicit smoothing splines," Opt. Express 22, 10775-10791 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-9-10775


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Robinson, G. Reid, eds., Interferogram Analysis: Digital Fringe Pattern Measurements (Institute of Physics, 1993).
  2. D. Malacara, M. Servin, Z. Malacara, Interferogram Analysis for Optical Testing (CRC, 2005). [CrossRef]
  3. M. Takeda, H. Ina, S. Kobayashi, “Fourier transform methods of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72(1), 156–160 (1982). [CrossRef]
  4. C. Rodier, F. Roddier, “Interferogram analysis using Fourier transform techniques,” Appl. Opt. 26(9), 1668–1673 (1987). [CrossRef]
  5. Q. Kemao, “Two-dimensional windowed Fourier transform for fringe pattern analysis: principle, applications and implementations,” Opt. Lasers Eng. 45(2), 304–317 (2007). [CrossRef]
  6. S. Fernandez, M. A. Gdeisat, J. Salvi, D. Burton, “Automatic window size selection in Windowed Fourier Transform for 3D reconstruction using adapted mother wavelets,” Opt. Commun. 284(12), 2797–2807 (2011). [CrossRef]
  7. Y. Ichioka, N. Inuiya, “Direct phase detecting system,” Appl. Opt. 11(7), 1507–1514 (1972). [CrossRef] [PubMed]
  8. O. Y. Kwon, D. M. Sough, “Multichannel grating phase-shift interferometers,” Proc. SPIE 599, 273–279 (1985). [CrossRef]
  9. K. Creath, J. Schmit, “N-point spatial phase-measurement techniques for non-destructive testing,” Opt. Lasers Eng. 24, 365–379 (1996). [CrossRef]
  10. M. Servin, J. L. Marroquin, F. J. Cuevas, “Demodulation of a single interferogram by use of a two-dimensional regularized phase-tracking technique,” Appl. Opt. 36(19), 4540–4548 (1997). [CrossRef] [PubMed]
  11. H. Wang, Q. Kemao, “Frequency guided methods for demodulation of a single fringe pattern,” Opt. Express 17(17), 15118–15127 (2009). [CrossRef] [PubMed]
  12. C. Tian, Y. Y. Yang, D. Liu, Y. J. Luo, Y. M. Zhuo, “Demodulation of a single complex fringe interferogram with a path-independent regularized phase-tracking technique,” Appl. Opt. 49(2), 170–179 (2010). [CrossRef] [PubMed]
  13. L. Kai, Q. Kemao, “A generalized regularized phase tracker for demodulation of a single fringe pattern,” Opt. Express 20(11), 12579–12592 (2012). [CrossRef] [PubMed]
  14. L. Kai, Q. Kemao, “Improved generalized regularized phase tracker for demodulation of a single fringe pattern,” Opt. Express 21(20), 24385–24397 (2013). [CrossRef] [PubMed]
  15. L. Watkins, S. Tan, T. Barnes, “Determination of interferometer phase distributions by use of wavelets,” Opt. Lett. 24(13), 905–907 (1999). [CrossRef]
  16. Z. Wang, H. Ma, “Advanced continuous wavelet transform algorithm for digital interferogram analysis and processing,” Opt. Eng. 45(4), 045601 (2006). [CrossRef]
  17. M. A. Gdeisat, D. R. Burton, D. R. Lalor, “Spatial carrier fringe pattern demodulation by use of a two-dimensional continuous wavelet transform,” Appl. Opt. 45(34), 8722–8732 (2006). [CrossRef] [PubMed]
  18. L. R. Watkins, “Review of fringe pattern phase recovery using 1-D and 2-D continuous wavelet transforms,” Opt. Lasers Eng. 50(8), 1015–1022 (2012). [CrossRef]
  19. K. Pokorski, K. Patorski, “Processing and phase analysis of fringe patterns with contrast reversals,” Opt. Express 21(19), 22596–22614 (2013). [CrossRef] [PubMed]
  20. P. Etchepareborda, A. L. Vadnjal, A. Federico, G. H. Kaufmann, “Phase-recovery improvement using analytic wavelet transform analysis of a noisy interferogram cepstrum,” Opt. Lett. 37(18), 3843–3845 (2012). [CrossRef] [PubMed]
  21. A. Dursun, Z. Sarac, H. S. Topkara, S. Ozder, F. N. Ecevit, “Phase recovery from interference fringes by using S-transform,” Measurement 41(4), 403–411 (2008). [CrossRef]
  22. M. Zhong, W. Chen, T. Wang, X. Su, “Application of two-dimensional S-Transform in fringe pattern analysis,” Opt. Lasers Eng. 51(10), 1138–1142 (2013). [CrossRef]
  23. N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. London A 454, 903–995 (1998). [CrossRef]
  24. N. E. Huang, Z. H. Wu, “A review on Hilbert-Huang transform method and its applications to geophysical studies,” Rev. Geophys. 46(2), 1–23 (2008). [CrossRef]
  25. Y. Lei, J. Lin, Z. He, M. Zuo, “A review on empirical mode decomposition in fault diagnosis of rotating machinery,” Mech. Syst. Signal Process. 35(1–2), 108–126 (2013). [CrossRef]
  26. M. Trusiak, K. Patorski, M. Wielgus, “Adaptive enhancement of optical fringe patterns by selective reconstruction using FABEMD algorithm and Hilbert spiral transform,” Opt. Express 20(21), 23463–23479 (2012). [CrossRef] [PubMed]
  27. M. Trusiak, M. Wielgus, K. Patorski, “Advanced processing of optical fringe patterns by automated selective reconstruction and enhanced fast empirical mode decomposition,” Opt. Lasers Eng. 52(1), 230–240 (2014). [CrossRef]
  28. G. Wang, Y. J. Li, H. Ch. Zhou, “Application of the radial basis function interpolation to phase extraction from a single electronic speckle pattern interferometric fringe,” Appl. Opt. 50(19), 3110–3117 (2011). [CrossRef] [PubMed]
  29. C. de Boor, A Practical Guide to Splines (Springer, 1994).
  30. C. Reinsch, “Smoothing by spline functions,” Numer. Math. 10, 177–183 (1967). [CrossRef]
  31. A. Federico, G. H. Kaufmann, “Local denoising of digital speckle pattern interferometry fringes by multiplicative correlation and weighted smoothing splines,” Appl. Opt. 44(14), 2728–2735 (2005). [CrossRef] [PubMed]
  32. M. J. Peyrovian, A. A. Sawchuk, “Restoration of noisy blurred images by a smoothing spline filter,” Appl. Opt. 16(12), 3147–3153 (1977). [CrossRef] [PubMed]
  33. P. Craven, G. Wahba, “Smoothing noisy data with spline functions estimating the correct degree of smoothing by the method of generalized cross validation,” Numer. Math. 31, 377–403 (1979). [CrossRef]
  34. M. J. D. Powell, “A hybrid method for nonlinear equations,” in Numerical Methods for Nonlinear Algebraic Equations, P. Rabinowitz, ed. (Gordon and Breach, 1970), pp. 87–114.
  35. M. J. D. Powell, “A Fortran subroutine for solving systems of nonlinear algebraic equations,” in Numerical Methods for Nonlinear Algebraic Equations, P. Rabinowitz, ed. (Gordon and Breach, 1970), pp. 115–161.
  36. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes: The Art of Scientific Computing, 2 (Cambridge University, 1992).
  37. J. Ma, Z. Wang, B. Pan, T. Hoang, M. Vo, L. Luu, “Two-dimensional continuous wavelet transform for phase determination of complex interferograms,” Appl. Opt. 50(16), 2425–2430 (2011). [CrossRef] [PubMed]
  38. J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts and Company, 2007).
  39. G. H. Kaufmann, “Nondestructive testing with thermal waves using phase shifted temporal speckle pattern interferometry,” Opt. Eng. 42(7), 2010–2014 (2003). [CrossRef]
  40. K. Patorski, L. Salbut, “Simple polarization phase-stepping scatterplate interferometry,” Opt. Eng. 43(2), 393–397 (2004). [CrossRef]
  41. C. de Boor, “Calculation of the smoothing spline with weighted roughness measure,” this paper can be downloaded at http://www.cs.wisc.edu .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited