OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 9 — May. 5, 2014
  • pp: 10800–10814

Determining optimum operating conditions of the polarization-maintaining fiber with two far-lying zero dispersion wavelengths for CARS microscopy

Majid Naji, Sangeeta Murugkar, and Hanan Anis  »View Author Affiliations


Optics Express, Vol. 22, Issue 9, pp. 10800-10814 (2014)
http://dx.doi.org/10.1364/OE.22.010800


View Full Text Article

Enhanced HTML    Acrobat PDF (1980 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Single femtosecond laser-based coherent anti-Stokes Raman scattering (CARS) microscopy, using a photonic crystal fiber (PCF) pumped in the near-IR to generate a supercontinuum for the Stokes source, is rapidly being adopted as a cost-effective approach. A PCF with two closely-lying zero dispersion wavelengths is a popular choice for the Stokes source, but it is often limited to imaging lipids. A polarization-maintaining PCF with two far-lying zero dispersion wavelengths offers important advantages for polarization CARS microscopy, and for CARS imaging in the fingerprint region. This PCF fiber, though commercially available, has limited use for CARS microscopy in the C-H bond region. The main problem is that the supercontinuum from this fiber is typically noisier than that from a standard PCF with two closely-lying zero dispersion wavelengths. To overcome this, we determined the optimum operating conditions for generating a low-noise supercontinuum out of a PCF with two far-lying zero dispersion wavelengths, in terms of the input parameters of the excitation pulse. We measured the relative intensity noise (RIN) of the Stokes and the corresponding CARS signal as a function of the input laser parameters in this fiber. We showed that the results of CARS imaging using this alternate fiber are comparable to those achieved using the standard fiber, for input laser pulse conditions of low average power, narrow pulse width with slightly positive chirp, and polarization direction parallel to the slow axis of the selected fiber.

© 2014 Optical Society of America

OCIS Codes
(300.6230) Spectroscopy : Spectroscopy, coherent anti-Stokes Raman scattering
(180.4315) Microscopy : Nonlinear microscopy
(060.5295) Fiber optics and optical communications : Photonic crystal fibers
(320.6629) Ultrafast optics : Supercontinuum generation

ToC Category:
Microscopy

History
Original Manuscript: February 20, 2014
Revised Manuscript: April 16, 2014
Manuscript Accepted: April 20, 2014
Published: April 28, 2014

Virtual Issues
Vol. 9, Iss. 7 Virtual Journal for Biomedical Optics

Citation
Majid Naji, Sangeeta Murugkar, and Hanan Anis, "Determining optimum operating conditions of the polarization-maintaining fiber with two far-lying zero dispersion wavelengths for CARS microscopy," Opt. Express 22, 10800-10814 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-9-10800


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. N. Paulsen, K. M. Hilligsøe, J. Thøgersen, S. R. Keiding, J. J. Larsen, “Coherent anti-Stokes Raman scattering microscopy with a photonic crystal fiber based light source,” Opt. Lett. 28(13), 1123–1125 (2003). [CrossRef] [PubMed]
  2. S. Murugkar, C. Brideau, A. Ridsdale, M. Naji, P. K. Stys, H. Anis, “Coherent anti-Stokes Raman scattering microscopy using photonic crystal fiber with two closely lying Zero dispersion wavelengths,” Opt. Express 15(21), 14028–14037 (2007). [CrossRef] [PubMed]
  3. A. F. Pegoraro, A. D. Slepkov, A. Ridsdale, J. P. Pezacki, A. Stolow, “Single laser source for multimodal coherent anti-Stokes Raman scattering microscopy,” Appl. Opt. 49(25), F10–F17 (2010). [CrossRef] [PubMed]
  4. T. Lee, R. P. Trivedi, I. I. Smalyukh, “Multimodal nonlinear optical polarizing microscopy of long-range molecular order in liquid crystals,” Opt. Lett. 35(20), 3447–3449 (2010). [CrossRef] [PubMed]
  5. A. D. Slepkov, A. Ridsdale, H. N. Wan, M. H. Wang, A. F. Pegoraro, D. J. Moffatt, J. P. Pezacki, F. J. Kao, A. Stolow, “Forward-collected simultaneous fluorescence lifetime imaging and coherent anti-Stokes Raman scattering microscopy,” J. Biomed. Opt. 16(2), 021103 (2011). [CrossRef] [PubMed]
  6. J. Yuan, G. Zhou, H. Liu, C. Xia, X. Sang, Q. Wu, C. Yu, K. Wang, B. Yan, Y. Han, G. Farrel, L. Hou, “Coherent anti-Stokes Raman scattering microscopy by dispersive wave generations in a polarization maintaining photonic crystal fiber,” Prog. Electromagnetics Res. 141(65), 659–670 (2013). [CrossRef]
  7. B. C. Chen, J. Sung, X. Wu, S. H. Lim, “Chemical imaging and microspectroscopy with spectral focusing coherent anti-Stokes Raman scattering,” J. Biomed. Opt. 16(2), 021112 (2011). [CrossRef] [PubMed]
  8. A. F. Pegoraro, A. D. Slepkov, A. Ridsdale, D. J. Moffatt, A. Stolow, “Hyperspectral multimodal CARS microscopy in the fingerprint region,” J Biophotonics 7(1-2), 49–58 (2014). [CrossRef] [PubMed]
  9. B. G. Saar, R. S. Johnston, C. W. Freudiger, X. S. Xie, E. J. Seibel, “Coherent Raman scanning fiber endoscopy,” Opt. Lett. 36(13), 2396–2398 (2011). [CrossRef] [PubMed]
  10. B. Smith, M. Naji, S. Murugkar, E. Alarcon, C. Brideau, P. Stys, H. Anis, “Portable, miniaturized, fibre delivered, multimodal CARS exoscope,” Opt. Express 21(14), 17161–17175 (2013). [CrossRef] [PubMed]
  11. H. Tu, S. A. Boppart, “Coherent anti-Stokes Raman scattering microscopy: overcoming technical barriers for clinical translation,” J Biophotonics 7(1-2), 9–22 (2014). [CrossRef] [PubMed]
  12. A. F. Pegoraro, A. Ridsdale, D. J. Moffatt, J. P. Pezacki, B. K. Thomas, L. Fu, L. Dong, M. E. Fermann, A. Stolow, “All-fiber CARS microscopy of live cells,” Opt. Express 17(23), 20700–20706 (2009). [CrossRef] [PubMed]
  13. T. Gottschall, M. Baumgartl, A. Sagnier, J. Rothhardt, C. Jauregui, J. Limpert, A. Tünnermann, “Fiber-based source for multiplex-CARS microscopy based on degenerate four-wave mixing,” Opt. Express 20(11), 12004–12013 (2012). [CrossRef] [PubMed]
  14. NKT, “Femtowhite CARS, Supercontinuum Device for Coherent Anti-Stokes Raman Scattering Applications,” www.nktphotonics.com/files/files/femtoWHITE-CARS.pdf ‎.
  15. NKT, “NL-PM-750, Nonlinear Photonic Crystal Fiber,” http://www.nktphotonics.com/files/files/NL-PM- 750–090612.pdf.
  16. C. Pohling, T. Buckup, M. Motzkus, “Hyperspectral data processing for chemoselective multiplex coherent anti-Stokes Raman scattering microscopy of unknown samples,” J. Biomed. Opt. 16(2), 021105 (2011). [CrossRef] [PubMed]
  17. K. Shi, P. Li, Z. Liua, “Broadband coherent anti-Stokes Raman scattering spectroscopy in supercontinuum optical trap,” Appl. Phys. Lett. 90(14), 141116 (2007). [CrossRef]
  18. H. Kano, H. O. Hamaguchi, “Vibrationally resonant imaging of a single living cell by supercontinuum-based multiplex coherent anti-Stokes Raman scattering microspectroscopy,” Opt. Express 13(4), 1322–1327 (2005). [CrossRef] [PubMed]
  19. P. Groß, L. Kleinschmidt, S. Beer, C. Cleff, C. Fallnich, “Single-laser light source for CARS microscopy based on soliton self-frequency shift in a microstructured fiber,” Appl. Phys. B 101(1-2), 167–172 (2010). [CrossRef]
  20. P. Klarskov, A. Isomäki, K. P. Hansen, P. E. Andersen, “Supercontinuum generation for coherent anti-Stokes Raman scattering microscopy with photonic crystal fibers,” Opt. Express 19(27), 26672–26683 (2011). [CrossRef] [PubMed]
  21. K. M. Hilligsøe, T. Andersen, H. Paulsen, C. Nielsen, K. Mølmer, S. Keiding, R. Kristiansen, K. Hansen, J. Larsen, “Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths,” Opt. Express 12(6), 1045–1054 (2004). [CrossRef] [PubMed]
  22. J. M. Dudley, G. Genty, S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006). [CrossRef]
  23. M. H. Frosz, P. Falk, O. Bang, “The role of the second zero-dispersion wavelength in generation of supercontinua and bright-bright soliton-pairs across the zero-dispersion wavelength,” Opt. Express 13(16), 6181–6192 (2005). [CrossRef] [PubMed]
  24. A. V. Husalou, J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonics crystal fibers,” Phys. Rev. Lett. 87(20), 203901 (2001). [CrossRef]
  25. J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88(17), 173901 (2002). [CrossRef] [PubMed]
  26. G. P. Agrawal, “Nonlinear Fiber Optics,” fifth edition, Academic press, NY. (2013).
  27. K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90(11), 113904 (2003). [CrossRef] [PubMed]
  28. J. M. Dudley, S. Coen, “Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,” Opt. Lett. 27(13), 1180–1182 (2002). [CrossRef] [PubMed]
  29. M. Naji, S. Murugkar, K. Khan, H. Anis, “Coherent anti-Stokes Raman scattering microscopy using photonic crystal fibers,” Proc. SPIE 7569, 75692S (2010). [CrossRef]
  30. A. Demircan, U. Bandelow, “Analysis of the interplay between soliton fission and modulation instability in supercontinuum generation,” Appl. Phys. B 86(1), 31–39 (2006). [CrossRef]
  31. Z. Zhu, T. G. Brown, “Polarization properties of supercontinuum spectra generated in birefringent photonic crystal fiber,” J. Opt. Soc. Am. B 21(2), 249–257 (2004). [CrossRef]
  32. C. L. Evans, X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: Chemical imaging for biology and medicine,” Annu Rev Anal Chem (Palo Alto Calif) 1(1), 883–909 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited