OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 9 — May. 5, 2014
  • pp: 10831–10843

Time domain adjoint sensitivity analysis of electromagnetic problems with nonlinear media

Mohamed H. Bakr, Osman S. Ahmed, Mohamed H. El Sherif, and Tsuyoshi Nomura  »View Author Affiliations


Optics Express, Vol. 22, Issue 9, pp. 10831-10843 (2014)
http://dx.doi.org/10.1364/OE.22.010831


View Full Text Article

Enhanced HTML    Acrobat PDF (988 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, we propose a theory for wideband adjoint sensitivity analysis of problems with nonlinear media. We show that the sensitivities of the desired response with respect to all shape and material parameters are obtained through one extra adjoint simulation. Unlike linear problems, the system matrices of this adjoint simulation are time varying. Their values are determined during the original simulation. The proposed theory exploits the time-domain transmission line modeling (TLM) and provides an efficient AVM approach for sensitivity analysis of general time domain objective functions. The theory has been illustrated through a number of examples.

© 2014 Optical Society of America

OCIS Codes
(000.2700) General : General science
(190.0190) Nonlinear optics : Nonlinear optics

ToC Category:
Nonlinear Optics

History
Original Manuscript: November 21, 2013
Manuscript Accepted: January 27, 2014
Published: April 29, 2014

Citation
Mohamed H. Bakr, Osman S. Ahmed, Mohamed H. El Sherif, and Tsuyoshi Nomura, "Time domain adjoint sensitivity analysis of electromagnetic problems with nonlinear media," Opt. Express 22, 10831-10843 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-9-10831


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. A. Maas, Nonlinear microwave circuits. (IEEE, 1997).
  2. A. E. Schmitz, R. H. Walden, L. E. Larson, S. E. Rosenbaum, R. A. Metzger, J. R. Behnke, P. A. Macdonald, “A deep-submicrometer microwave/digital CMOS/SOS technology,” IEEE Electron Device Lett. 12(1), 16–17 (1991). [CrossRef]
  3. N. Camilleri, J. Costa, D. Lovelace, and D. Ngo, “Silicon MOSFETs, the microwave device technology for the 1990s,” in Microwave Symposium Digest, IEEE MTT-S International, (1993), pp. 545–548. [CrossRef]
  4. P. Russer, N. Fichtner, “Nanoelectronics in radio-frequency technology,” IEEE Microw. Mag. 11(3), 119–135 (2010). [CrossRef]
  5. S. A. Sørngård, S. I. Simonsen, J. P. Hansen, “High-order harmonic generation from graphene: Strong attosecond pulses with arbitrary polarization,” Phys. Rev. A 87(5), 053803 (2013). [CrossRef]
  6. M. A. Foster, A. C. Turner, M. Lipson, A. L. Gaeta, “Nonlinear optics in photonic nanowires,” Opt. Express 16(2), 1300–1320 (2008). [CrossRef] [PubMed]
  7. C. Koos, L. Jacome, C. Poulton, J. Leuthold, W. Freude, “Nonlinear silicon-on-insulator waveguides for all-optical signal processing,” Opt. Express 15(10), 5976–5990 (2007). [CrossRef] [PubMed]
  8. N. G. R. Broderick, T. M. Monro, P. J. Bennett, D. J. Richardson, “Nonlinearity in holey optical fibers: measurement and future opportunities,” Opt. Lett. 24(20), 1395–1397 (1999). [CrossRef] [PubMed]
  9. P. L. Kelley, “Self-Focusing of Optical Beams,” Phys. Rev. Lett. 15(26), 1005–1008 (1965). [CrossRef]
  10. J. M. Dudley, J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fibre,” Nat. Photonics 3(2), 85–90 (2009). [CrossRef]
  11. T. Popmintchev, M.-C. Chen, P. Arpin, M. M. Murnane, H. C. Kapteyn, “The attosecond nonlinear optics of bright coherent X-ray generation,” Nat. Photonics 4(12), 822–832 (2010). [CrossRef]
  12. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Efficient visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” in Summaries of Papers Presented at the Conference on Lasers and Electro-Optics, CLEO ’99 (1999), CPD8/1–CPD8/2. [CrossRef]
  13. J. K. Ranka, R. S. Windeler, A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25(1), 25–27 (2000). [CrossRef] [PubMed]
  14. Y. Gontier, M. Trahin, “Frequency conversion involving Raman-like processes above the ionization threshold,” IEEE J. Quantum Electron. 18(7), 1137–1145 (1982). [CrossRef]
  15. R. Claps, V. Raghunathan, D. Dimitropoulos, B. Jalali, “Influence of nonlinear absorption on Raman amplification in Silicon waveguides,” Opt. Express 12(12), 2774–2780 (2004). [CrossRef] [PubMed]
  16. R. Dekker, N. Usechak, M. Först, A. Driessen, “Ultrafast nonlinear all-optical processes in silicon-on-insulator waveguides,” J. Phys. D Appl. Phys. 40(14), R249–R271 (2007). [CrossRef]
  17. T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, A. Imamoğlu, “Ultrafast all-optical switching by single photons,” Nat. Photonics 6(9), 607–609 (2012). [CrossRef]
  18. S. Kawanishi, O. Kamatani, “All-optical time division multiplexing using four-wave mixing,” Electron. Lett. 30(20), 1697–1698 (1994). [CrossRef]
  19. A. M. Darwish, E. P. Ippen, H. Q. Le, J. P. Donnelly, S. H. Groves, “Optimization of four‐wave mixing conversion efficiency in the presence of nonlinear loss,” Appl. Phys. Lett. 69(6), 737–739 (1996). [CrossRef]
  20. Ö. Boyraz, P. Koonath, V. Raghunathan, B. Jalali, “All optical switching and continuum generation in silicon waveguides,” Opt. Express 12(17), 4094–4102 (2004). [CrossRef] [PubMed]
  21. C. Koos, L. Jacome, C. Poulton, J. Leuthold, W. Freude, “Nonlinear silicon-on-insulator waveguides for all-optical signal processing,” Opt. Express 15(10), 5976–5990 (2007). [CrossRef] [PubMed]
  22. V. Rizzoli, A. Costanzo, D. Masotti, A. Lipparini, F. Mastri, “Computer-aided optimization of nonlinear microwave circuits with the aid of electromagnetic simulation,” IEEE Trans. Microw. Theory Tech. 52(1), 362–377 (2004). [CrossRef]
  23. R. M. Joseph, A. Taflove, “FDTD Maxwell’s equations models for nonlinear electrodynamics and optics,” IEEE Trans. Antenn. Propag. 45(3), 364–374 (1997). [CrossRef]
  24. P. Russer, P. P. M. So, W. J. R. Hoefer, “Modeling of nonlinear active regions in TLM (distributed circuits),” IEEE Microw. Guided Wave Letts. 1(1), 10–13 (1991). [CrossRef]
  25. M. Nakhla, J. Vlach, “A piecewise harmonic balance technique for determination of periodic response of nonlinear systems,” IEEE Trans. Circ. Syst. 23(2), 85–91 (1976). [CrossRef]
  26. J. E. Rayas-Sanchez, “EM-based optimization of microwave circuits using artificial neural networks: the state-of-the-art,” IEEE Trans. Microw. Theory Tech. 52(1), 420–435 (2004). [CrossRef]
  27. J. S. Jensen, “Topology optimization of nonlinear optical devices,” Struct. Multidisc. Optim. 43(6), 731–743 (2011). [CrossRef]
  28. M. Gao, C. Jiang, W. Hu, J. Wang, “Optimized design of two-pump fiber optical parametric amplifier with two-section nonlinear fibers using genetic algorithm,” Opt. Express 12(23), 5603–5613 (2004). [CrossRef] [PubMed]
  29. M. H. Bakr, J. W. Bandler, K. Madsen, J. E. Rayas-Sanchez, J. Sondergaard, “Space-mapping optimization of microwave circuits exploiting surrogate models,” IEEE Trans. Microw. Theory Tech. 48(12), 2297–2306 (2000). [CrossRef]
  30. L. Zhang, J. Xu, M. C. E. Yagoub, R. Ding, Q.-J. Zhang, “Efficient analytical formulation and sensitivity analysis of neuro-space mapping for nonlinear microwave device modeling,” IEEE Trans. Microw. Theory Tech. 53(9), 2752–2767 (2005). [CrossRef]
  31. H. Igarashi, K. Watanabe, “Complex adjoint variable method for finite-element analysis of eddy current problems,” IEEE Trans. Magn. 46(8), 2739–2742 (2010). [CrossRef]
  32. I.-H. Park, B.-T. Lee, S.-Y. Hahn, “Design sensitivity analysis for nonlinear magnetostatic problems using finite element method,” IEEE Trans. Magn. 28(2), 1533–1536 (1992). [CrossRef]
  33. B. Lojek, “Sensitivity analysis of nonlinear circuits,” Electronic Circuits and Systems, IEE Proceedings 129(3), 85–88 (1982). [CrossRef]
  34. Y. Chung, C. Cheon, I. Park, S. Hahn, “Optimal shape design of microwave device using FDTD and design sensitivity analysis,” IEEE Trans. Microw. Theory Tech. 48(12), 2289–2296 (2000). [CrossRef]
  35. Y. Chung, J. Ryu, C. Cheon, I. Park, S. Hahn, “Optimal design method for microwave device using time domain method and design sensitivity analysis—Part I: FETD case,” IEEE Trans. Magn. 37(5), 3289–3293 (2001). [CrossRef]
  36. Y. Chung, C. Cheon, I. Park, S. Hahn, “Optimal design method for microwave device using time domain method and design sensitivity analysis—Part II: FDTD case,” IEEE Trans. Magn. 37(5), 3255–3259 (2001). [CrossRef]
  37. J. P. Webb, “Design sensitivity of frequency response in 3-D finite-element analysis of microwave devices,” IEEE Trans. Magn. 38(2), 1109–1112 (2002). [CrossRef]
  38. M. H. Bakr, N. K. Nikolova, “An adjoint variable method for time-domain transmission line modeling with fixed structured grids,” IEEE Trans. Microw. Theory Tech. 52(2), 554–559 (2004). [CrossRef]
  39. M. H. Bakr, P. Zhao, N. K. Nikolova, “Adjoint first order sensitivities of transient responses and their applications in the solution of inverse problems,” IEEE Trans. Antenn. Propag. 57(7), 2137–2146 (2009). [CrossRef]
  40. M. H. Bakr, N. K. Nikolova, P. A. W. Basl, “Self-Adjoint S-Parameter Sensitivities for Lossless Homogeneous TLM Problems,” International Journal of Numerical Modeling: Electronic Networks, Devices and Fields 18(6), 441–455 (2005). [CrossRef]
  41. P. A. W. Basl, M. H. Bakr, N. K. Nikolova, “Theory of self-adjoint S-parameter sensitivities for lossless nonhomogeneous transmission-line modeling problems,” IET Microwave Antennas Propag. 2(3), 211–220 (2008). [CrossRef]
  42. O. S. Ahmed, M. H. Bakr, X. Li, T. Nomura, “A Time-Domain Adjoint Variable Method for Materials With Dispersive Constitutive Parameters,” IEEE Trans. Microw. Theory Tech. 60(10), 2959–2971 (2012). [CrossRef]
  43. Optimetrics: parametrics and optimization using Ansoft HFSS,” Microwave Journal, (1999). [Online]. Available: http://www.microwavejournal.com/articles/2779-parametrics-and-optimization-using-ansoft-hfss . [Accessed 18 Nov. 2013].
  44. Press Release, “Sensitivity analysis and adapted optimization strategies for CST MICROWAVE STUDIO transient solver,” May 2010. [Online]. Available: www.cst.com/Content/News/Documents/2010_5_Timedomain2011_web.pdf . [Accessed 23 Oct. 2013].
  45. A. S. Saini, M. S. Nakhla, R. Achar, “Generalized time-domain adjoint sensitivity analysis of distributed MTL networks,” IEEE Trans. Microw. Theory Tech. 60(11), 3359–3368 (2012). [CrossRef]
  46. S. Lum, M. Nakhla, Q.-J. Zhang, “Sensitivity analysis of lossy coupled transmission lines with nonlinear terminations,” IEEE Trans. Microw. Theory Tech. 42(4), 607–615 (1994). [CrossRef]
  47. O. S. Ahmed, M. H. Bakr, X. Li, “A memory-efficient implementation of TLM- based adjoint sensitivity analysis,” IEEE Trans. Antenn. Propag. 60(4), 2122–2125 (2012). [CrossRef]
  48. O. S. Ahmed, M. H. Bakr, X. Li, “An impulse sampling approach for efficient 3D TLM-based adjoint sensitivity analysis,” Prog. Electromagnetics Res. 142, 485–503 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited