OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 9 — May. 5, 2014
  • pp: 10858–10867

Wavelength-dependent longitudinal polarizability of gold nanorod on optical torques

Jiunn-Woei Liaw, Wei-Jiun Lo, and Mao-Kuen Kuo  »View Author Affiliations


Optics Express, Vol. 22, Issue 9, pp. 10858-10867 (2014)
http://dx.doi.org/10.1364/OE.22.010858


View Full Text Article

Enhanced HTML    Acrobat PDF (1173 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This study theoretically investigates the wavelength-dependent longitudinal polarizability of a gold nanorod (GNR) irradiated by a polarized laser beam. The resultant optical torque in terms of the Maxwell stress tensor was analyzed quantitatively using the multiple multipole method. Our results indicate that the real part of the longitudinal polarizability of GNR can be either positive or negative, leading to the parallel or perpendicular modes, respectively. For the parallel and perpendicular modes, the long axis of GNR is rotated to align parallel and perpendicular, respectively, to the polarization direction of the illuminating light. The turning point between these two modes, depending on the aspect ratio (AR) and the size of GNR, nearly coincides with the longitudinal surface plasmon resonance (LSPR). The perpendicular mode ranges from the transverse SPR to LSPR, and the range of the parallel mode is broadband from LSPR to the near infrared regime. Owing to that a larger optical torque and less plasmonic heating are of concern, an efficiency of optical torque is defined to evaluate the performance of different wavelengths. Analysis results indicate that lasers with wavelength in the perpendicular mode are applicable to rotate and align a GNR of a higher AR. For example, the laser of 785 nm (the perpendicular mode) is superior to that of 1064 nm (the parallel mode, off-resonant from LSPR of 955 nm) for rotating a GNR of AR = 4 and radius 20 nm with an orientation of 45° with respect to the laser polarization.

© 2014 Optical Society of America

OCIS Codes
(140.7010) Lasers and laser optics : Laser trapping
(240.6680) Optics at surfaces : Surface plasmons
(260.3910) Physical optics : Metal optics
(250.5403) Optoelectronics : Plasmonics
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Plasmonics

History
Original Manuscript: February 5, 2014
Revised Manuscript: April 7, 2014
Manuscript Accepted: April 20, 2014
Published: April 29, 2014

Virtual Issues
Vol. 9, Iss. 7 Virtual Journal for Biomedical Optics

Citation
Jiunn-Woei Liaw, Wei-Jiun Lo, and Mao-Kuen Kuo, "Wavelength-dependent longitudinal polarizability of gold nanorod on optical torques," Opt. Express 22, 10858-10867 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-9-10858


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Bonin, B. Kourmanov, T. Walker, “Light torque nanocontrol, nanomotors and nanorockers,” Opt. Express 10(19), 984–989 (2002). [CrossRef] [PubMed]
  2. K. C. Toussaint, M. Liu, M. Pelton, J. Pesic, M. J. Guffey, P. Guyot-Sionnest, N. F. Scherer, “Plasmon resonance-based optical trapping of single and multiple Au nanoparticles,” Opt. Express 15(19), 12017–12029 (2007). [CrossRef] [PubMed]
  3. O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013). [CrossRef] [PubMed]
  4. M. L. Juan, M. Righini, R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011). [CrossRef]
  5. Z. Li, S. Zhang, L. Tong, P. Wang, B. Dong, H. Xu, “Ultrasensitive size-selection of plasmonic nanoparticles by Fano interference optical force,” ACS Nano 8(1), 701–708 (2014). [CrossRef] [PubMed]
  6. P. M. Hansen, V. K. Bhatia, N. Harrit, L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5(10), 1937–1942 (2005). [CrossRef] [PubMed]
  7. E. Messina, E. Cavallaro, A. Cacciola, M. A. Iatì, P. G. Gucciardi, F. Borghese, P. Denti, R. Saija, G. Compagnini, M. Meneghetti, V. Amendola, O. M. Maragò, “Plasmon-enhanced optical trapping of gold nanoaggregates with selected optical properties,” ACS Nano 5(2), 905–913 (2011). [CrossRef] [PubMed]
  8. M. Ploschner, M. Mazil, T. F. Kraussc, K. Dholakia, “Optical forces near a nanoantenna,” J. Nanophotonics 4(1), 041570 (2010). [CrossRef]
  9. A. S. Shalin, S. V. Sukhov, “Optical forces in plasmonic nanoantennas,” Quantum Electron. 42(4), 355–360 (2012). [CrossRef]
  10. B. J. Roxworthy, K. C. Toussaint., “Plasmonic nanotweezers: strong influence of adhesion layer and nanostructure orientation on trapping performance,” Opt. Express 20(9), 9591–9603 (2012). [CrossRef] [PubMed]
  11. A. Lehmuskero, R. Ogier, T. Gschneidtner, P. Johansson, M. Käll, “Ultrafast spinning of gold nanoparticles in water using circularly polarized light,” Nano Lett. 13(7), 3129–3134 (2013). [CrossRef] [PubMed]
  12. F. J. G. de Abajo, “Electromagnetic forces and torques in nanoparticles irradiated by plane waves,” J. Quant. Spectrosc. Radiat. Transf. 89(1-4), 3–9 (2004). [CrossRef]
  13. C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, L. B. Oddershede, “Quantitative optical trapping of single gold nanorods,” Nano Lett. 8(9), 2998–3003 (2008). [CrossRef] [PubMed]
  14. L. Tong, V. D. Miljković, M. Käll, “Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces,” Nano Lett. 10(1), 268–273 (2010). [CrossRef] [PubMed]
  15. J. Do, M. Fedoruk, F. Jäckel, J. Feldmann, “Two-color laser printing of individual gold nanorods,” Nano Lett. 13(9), 4164–4168 (2013). [CrossRef] [PubMed]
  16. H. Ma, P. M. Bendix, L. B. Oddershede, “Large-scale orientation dependent heating from a single irradiated gold nanorod,” Nano Lett. 12(8), 3954–3960 (2012). [CrossRef] [PubMed]
  17. P. V. Ruijgrok, N. R. Verhart, P. Zijlstra, A. L. Tchebotareva, M. Orrit, “Brownian fluctuations and heating of an optically aligned gold nanorod,” Phys. Rev. Lett. 107(3), 037401 (2011). [CrossRef] [PubMed]
  18. P. Zijlstra, M. van Stee, N. Verhart, Z. Gu, M. Orrit, “Rotational diffusion and alignment of short gold nanorods in an external electric field,” Phys. Chem. Chem. Phys. 14(13), 4584–4588 (2012). [CrossRef] [PubMed]
  19. L. Ling, H.-L. Guo, X.-L. Zhong, L. Huang, J.-F. Li, L. Gan, Z.-Y. Li, “Manipulation of gold nanorods with dual-optical tweezers for surface plasmon resonance control,” Nanotechnology 23(21), 215302 (2012). [CrossRef] [PubMed]
  20. J. Trojek, L. Chvátal, P. Zemánek, “Optical alignment and confinement of an ellipsoidal nanorod in optical tweezers: a theoretical study,” J. Opt. Soc. Am. A 29(7), 1224–1236 (2012). [CrossRef] [PubMed]
  21. M. Pelton, M. Liu, H. Y. Kim, G. Smith, P. Guyot-Sionnest, N. F. Scherer, “Optical trapping and alignment of single gold nanorods by using plasmon resonances,” Opt. Lett. 31(13), 2075–2077 (2006). [CrossRef] [PubMed]
  22. Z. Yan, J. Sweet, J. E. Jureller, M. J. Guffey, M. Pelton, N. F. Scherer, “Controlling the position and orientation of single silver nanowires on a surface using structured optical fields,” ACS Nano 6(9), 8144–8155 (2012). [CrossRef] [PubMed]
  23. Z. Yan, J. E. Jureller, J. Sweet, M. J. Guffey, M. Pelton, N. F. Scherer, “Three-dimensional optical trapping and manipulation of single silver nanowires,” Nano Lett. 12(10), 5155–5161 (2012). [CrossRef] [PubMed]
  24. Z. Yan, N. F. Scherer, “Optical vortex induced rotation of silver nanowires,” J. Phys. Chem. Lett. 4(17), 2937–2942 (2013). [CrossRef]
  25. Z. Yan, M. Pelton, L. Vigderman, E. R. Zubarev, N. F. Scherer, “Why single-beam optical tweezers trap gold nanowires in three dimensions,” ACS Nano 7(10), 8794–8800 (2013). [CrossRef] [PubMed]
  26. W. Ni, H. Ba, A. A. Lutich, F. Jäckel, J. Feldmann, “Enhancing Single-nanoparticle surface-chemistry by plasmonic overheating in an optical trap,” Nano Lett. 12(9), 4647–4650 (2012). [CrossRef] [PubMed]
  27. W. Ni, X. Kou, Z. Yang, J. Wang, “Tailoring longitudinal surface plasmon wavelengths, scattering and absorption cross sections of gold nanorods,” ACS Nano 2(4), 677–686 (2008). [CrossRef] [PubMed]
  28. J.-W. Liaw, H.-Y. Tsai, C.-H. Huang, “Size-dependent surface enhanced fluorescence of gold nanorod: enhancement or quenching,” Plasmonics 7(3), 543–553 (2012). [CrossRef]
  29. C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002). [CrossRef] [PubMed]
  30. C. Hafner, The Generalized Multipole Technique for Computational Electromagnetics (Artech. House, 1991).
  31. J.-W. Liaw, C.-H. Huang, M.-K. Kuo, “Longitudinal plasmon modes of Ag nanorod coupled with a pair of quantum dots,” J. Nanosci. Nanotechnol. 13(10), 6627–6634 (2013). [CrossRef] [PubMed]
  32. J.-W. Liaw, C.-H. Huang, B.-R. Chen, M.-K. Kuo, “Subwavelength Fabry-Perot resonator: a pair of quantum dots incorporated with gold nanorod,” Nanoscale Res. Lett. 7(1), 546 (2012). [CrossRef] [PubMed]
  33. A. Y. Bekshaev, K. Y. Bliokh, F. Nori, “Mie scattering and optical forces from evanescent fields: A complex-angle approach,” Opt. Express 21(6), 7082–7095 (2013). [CrossRef] [PubMed]
  34. P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited