OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 9 — May. 5, 2014
  • pp: 10868–10881

All-optical reservoir computer based on saturation of absorption

Antoine Dejonckheere, François Duport, Anteo Smerieri, Li Fang, Jean-Louis Oudar, Marc Haelterman, and Serge Massar  »View Author Affiliations

Optics Express, Vol. 22, Issue 9, pp. 10868-10881 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1416 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Reservoir computing is a new bio-inspired computation paradigm. It exploits a dynamical system driven by a time-dependent input to carry out computation. For efficient information processing, only a few parameters of the reservoir needs to be tuned, which makes it a promising framework for hardware implementation. Recently, electronic, opto-electronic and all-optical experimental reservoir computers were reported. In those implementations, the nonlinear response of the reservoir is provided by active devices such as optoelectronic modulators or optical amplifiers. By contrast, we propose here the first reservoir computer based on a fully passive nonlinearity, namely the saturable absorption of a semiconductor mirror. Our experimental setup constitutes an important step towards the development of ultrafast low-consumption analog computers.

© 2014 Optical Society of America

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(200.4260) Optics in computing : Neural networks
(200.4560) Optics in computing : Optical data processing
(200.4700) Optics in computing : Optical neural systems
(200.4740) Optics in computing : Optical processing

ToC Category:
Optics in Computing

Original Manuscript: January 31, 2014
Revised Manuscript: April 14, 2014
Manuscript Accepted: April 14, 2014
Published: April 29, 2014

Antoine Dejonckheere, François Duport, Anteo Smerieri, Li Fang, Jean-Louis Oudar, Marc Haelterman, and Serge Massar, "All-optical reservoir computer based on saturation of absorption," Opt. Express 22, 10868-10881 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Jaeger, “The ’echo state’ approach to analysing and training recurrent neural networks - with an Erratum note,” GMD Report 148: German National Research Centre for Information Technology (2001).
  2. H. Jaeger, H. Haas, “Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication,” Science 304(5667), 78–80 (2004). [CrossRef] [PubMed]
  3. W. Maass, T. Natschläger, H. Markram, “Real-time computing without stable states: a new framework for neural computations based on perturbations,” Neural Comput. 14(11), 2531–2560 (2002). [CrossRef] [PubMed]
  4. M. Lukoševičius, H. Jaeger, “Reservoir computing approaches to recurrent neural network training,” Comput. Sci. Rev. 3127–149 (2009). [CrossRef]
  5. L. Appeltant, M.C. Soriano, G. Van der Sande, J. Danckaert, S. Massar, J. Dambre, B. Schrauwen, C.R. Mirasso, I. Fischer, “Information processing using a single dynamical node as complex system,” Nat. Commun. 2, 468 (2011). [CrossRef] [PubMed]
  6. Y. Paquot, F. Duport, A. Smerieri, J. Dambre, B. Schrauwen, M. Haelterman, S. Massar, “Optoelectronic reservoir computing,” Sci. Rep. 2, 468 (2012). [CrossRef] [PubMed]
  7. L. Larger, M. C. Soriano, D. Brunner, L. Appeltant, J. M. Gutierrez, L. Pesquera, C. R. Mirasso, I. Fischer, “Photonic information processing beyond Turing: an optoelectronic implementation of reservoir computing,” Opt. Express 20, 3241–3249 (2012). [CrossRef] [PubMed]
  8. F. Duport, B. Schneider, A. Smerieri, M. Haelterman, S. Massar, “All-optical reservoir computing,” Opt. Express 20, 22783–22795 (2012). [CrossRef] [PubMed]
  9. D. Brunner, M. C. Soriano, C. R. Mirasso, I. Fischer, “Parallel photonic information processing at gigabyte per second data rates using transient states,” Nat. Commun. 4, 1364 (2013). [CrossRef]
  10. K. Vandoorne, W. Dierckx, B. Schrauwen, D. Verstraeten, R. Baets, P. Bienstman, J. Van Campenhout, “Toward optical signal processing using Photonic Reservoir Computing,” Opt. Express 16, 11182–11192 (2008). [CrossRef] [PubMed]
  11. K. Vandoorne, J. Dambre, D. Verstraeten, B. Schrauwen, P. Bienstman, “Parallel reservoir computing using optical amplifiers,” IEEE T. Neural Netw. 221469–1481 (2011). [CrossRef]
  12. C. Mesaritakis, V. Papataxiarhis, D. Syvridis, “Micro ring resonators as building blocks for an all-optical high-speed reservoir-computing bit-pattern-recognition system,” J. Opt. Soc. Am. B 30, 3048–3055 (2013). [CrossRef]
  13. K. Vandoorne, P. Mechet, T. Van Vaerenbergh, M. Fiers, G. Morthier, D. Verstraeten, B. Schrauwen, J. Dambre, P. BIenstman, “Experimental demonstration of reservoir computing on a silicon photonics chip,” Nat. Commun. 4, 3541 (2014).
  14. D. Massoubre, J.L. Oudar, J. Fatome, S. Pitois, G. Millot, J. Decobert, J. Landreau, “All-optical extinction ratio enhancement of a 160 Ghz pulse train by a saturable absorber vertical microcavity,” Opt. Lett. 31537–539 (2006). [CrossRef] [PubMed]
  15. L. Bramerie, Q. Trung Le, M. Gay, A. O’Hare, S. Lobo, M. Joindot, J-C Simon, H-T. Nguyen, J-L. Oudar, “All-optical 2R regeneration with a vertical microcavity-based saturable absorber,” IEEE J. Sel. Top. Quantum Electron. 18870–883 (2012). [CrossRef]
  16. D. Massoubre, J-L. Oudar, J. Dion, J-C Harmand, A. Shen, J. Landreau, L. Decobert, “Scaling of the saturation energy in microcavity saturable absorber devices,” Appl. Phys. Lett. 88153513 (2006). [CrossRef]
  17. A. Rodan, P. Tiňo, “Minimum complexity echo state network,” IEEE T. Neural Netw. 22131–144 (2011). [CrossRef]
  18. A. Rodan, P. Tiňo, “Simple deterministically constructed recurrent neural networks,” in Intelligent Data Engineering and Automated Learning (IDEAL, 2010), pp. 267–274.
  19. H. Jaeger, “Short-term memory in echo states networks,” GMD Report 152, German National Research Center for Information Technology (2002).
  20. J. Dambre, D. Verstraeten, B. Schrauwen, S. Massar, “Information processing capacity of dynamical systems,” Sci. Rep. 2, 514 (2012). [CrossRef] [PubMed]
  21. http://soma.ece.mcmaster.ca/ipix/dartmouth/datasets.html
  22. D. Verstraeten, B. Schrauwen, D. Stroobandt, “Isolated word recognition using a liquid state machine,” in Proceedings of the 13th European Symposium on Artificial Neural Networks(ESANN), 435–440 (2005).
  23. Texas Instruments-Developed 46-Word Speaker-Dependent Isolated Word Corpus (TI46), September 1991, NIST Speech Disc 7-1.1 (1 disc), (1991).
  24. R. Lyon, “A computational model of filtering, detection, and compression in the cochlea,” in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, 1282–1285 (1982). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited