OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 9 — May. 5, 2014
  • pp: 10906–10913

Dual-wavelength rectangular pulse Yb-doped fiber laser using a microfiber-based graphene saturable absorber

Nian Zhao, Meng Liu, Hao Liu, Xu-Wu Zheng, Qiu-Yi Ning, Ai-Ping Luo, Zhi-Chao Luo, and Wen-Cheng Xu  »View Author Affiliations

Optics Express, Vol. 22, Issue 9, pp. 10906-10913 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (3624 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We reported on the generation of dual-wavelength rectangular pulses in a Yb-doped fiber laser (YDFL) by using a microfiber-based graphene saturable absorber (GSA). The duration of dual-wavelength rectangular pulse could be varied from 1.41 ns to 4.23 ns with the increasing pump power. With a tunable bandpass filter, it was found that the characteristics of the rectangular pulses centered at 1061.8 nm and 1068.8 nm are similar to each other. Moreover, the dual-wavelength switchable operation was also realized by properly rotating the polarization controllers (PCs). The demonstration of the dual-wavelength rectangular pulses from a YDFL would open some applications for fields such as spectroscopy, biomedicine and sensing research.

© 2014 Optical Society of America

OCIS Codes
(140.4050) Lasers and laser optics : Mode-locked lasers
(160.4330) Materials : Nonlinear optical materials
(250.5530) Optoelectronics : Pulse propagation and temporal solitons
(140.3615) Lasers and laser optics : Lasers, ytterbium

ToC Category:
Lasers and Laser Optics

Original Manuscript: February 19, 2014
Revised Manuscript: April 13, 2014
Manuscript Accepted: April 16, 2014
Published: April 29, 2014

Nian Zhao, Meng Liu, Hao Liu, Xu-Wu Zheng, Qiu-Yi Ning, Ai-Ping Luo, Zhi-Chao Luo, and Wen-Cheng Xu, "Dual-wavelength rectangular pulse Yb-doped fiber laser using a microfiber-based graphene saturable absorber," Opt. Express 22, 10906-10913 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. W. Wise, A. Chong, W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2(1–2), 58–73 (2008). [CrossRef]
  2. B. Ortaç, O. Schmidt, T. Schreiber, J. Limpert, A. Tünnermann, A. Hideur, “High-energy femtosecond Yb-doped dispersion compensation free fiber laser,” Opt. Express 15(17), 10725–10732 (2007). [CrossRef] [PubMed]
  3. M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84(26), 6010–6013 (2000). [CrossRef] [PubMed]
  4. F. Ö. Ilday, J. R. Buckley, W. G. Clark, F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213902 (2004). [CrossRef] [PubMed]
  5. B. Ortaç, A. Hideur, M. Brunel, C. Chédot, J. Limpert, A. Tünnermann, F. O. Ilday, “Generation of parabolic bound pulses from a Yb-fiber laser,” Opt. Express 14(13), 6075–6083 (2006). [CrossRef] [PubMed]
  6. N. Akhmediev, J. M. Soto-Crespo, Ph. Grelu, “Roadmap to ultra-short record high-energy pulses out of laser oscillators,” Phys. Lett. A 372(17), 3124–3128 (2008). [CrossRef]
  7. W. Chang, A. Ankiewicz, J. M. Soto-Crespo, N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A 78(2), 023830 (2008). [CrossRef]
  8. Ph. Grelu, W. Chang, A. Ankiewicz, J. M. Soto-Crespo, N. Akhmediev, “Dissipative soliton resonance as a guideline for high-energy pulse laser oscillators,” J. Opt. Soc. Am. B 27(11), 2336–2341 (2010). [CrossRef]
  9. E. Ding, Ph. Grelu, J. N. Kutz, “Dissipative soliton resonance in a passively mode-locked fiber laser,” Opt. Lett. 36(7), 1146–1148 (2011). [CrossRef] [PubMed]
  10. Ph. Grelu, N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012). [CrossRef]
  11. X. Wu, D. Y. Tang, H. Zhang, L. M. Zhao, “Dissipative soliton resonance in an all-normal-dispersion erbium-doped fiber laser,” Opt. Express 17(7), 5580–5584 (2009). [CrossRef] [PubMed]
  12. Z. C. Luo, W. J. Cao, Z. B. Lin, Z. R. Cai, A. P. Luo, W. C. Xu, “Pulse dynamics of dissipative soliton resonance with large duration-tuning range in a fiber ring laser,” Opt. Lett. 37(22), 4777–4779 (2012). [CrossRef] [PubMed]
  13. X. H. Li, X. M. Liu, X. H. Hu, L. R. Wang, H. Lu, Y. S. Wang, W. Zhao, “Long-cavity passively mode-locked fiber ring laser with high-energy rectangular-shape pulses in anomalous dispersion regime,” Opt. Lett. 35(19), 3249–3251 (2010). [CrossRef] [PubMed]
  14. L. Duan, X. M. Liu, D. Mao, L. Wang, G. Wang, “Experimental observation of dissipative soliton resonance in an anomalous-dispersion fiber laser,” Opt. Express 20(1), 265–270 (2012). [CrossRef] [PubMed]
  15. L. Liu, J. H. Liao, Q. Y. Ning, W. Yu, A. P. Luo, S. H. Xu, Z. C. Luo, Z. M. Yang, W. C. Xu, “Wave-breaking-free pulse in an all-fiber normal-dispersion Yb-doped fiber laser under dissipative soliton resonance condition,” Opt. Express 21(22), 27087–27092 (2013). [CrossRef] [PubMed]
  16. H. Zhang, D. Y. Tang, X. Wu, L. M. Zhao, “Multi-wavelength dissipative soliton operation of an erbium-doped fiber laser,” Opt. Express 17(15), 12692–12697 (2009). [CrossRef] [PubMed]
  17. Z. X. Zhang, Z. W. Xu, L. Zhang, “Tunable and switchable dual-wavelength dissipative soliton generation in an all-normal-dispersion Yb-doped fiber laser with birefringence fiber filter,” Opt. Express 20(24), 26736–26742 (2012). [CrossRef] [PubMed]
  18. Z. Q. Luo, Y. Z. Huang, J. Z. Wang, H. H. Cheng, Z. P. Cai, C. C. Ye, “Multiwavelength dissipative-soliton generation in Yb-fiber laser using graphene-deposited fiber-taper,” IEEE Photon. Technol. Lett. 24(17), 1539–1542 (2012). [CrossRef]
  19. X. M. Liu, D. D. Han, Z. P. Sun, C. Zeng, H. Lu, D. Mao, Y. D. Cui, F. Q. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep. 3, 2718 (2013). [PubMed]
  20. B. G. Bale, E. Farnum, J. N. Kutz, “Theory and simulation of passive multifrequency mode-locking with waveguide arrays,” IEEE J. Quantum Electron. 44(10), 976–983 (2008). [CrossRef]
  21. Z. Chen, H. Z. Sun, S. Z. Ma, N. K. Dutta, “Dual-wavelength mode-locked erbium-doped fiber ring laser using highly nonlinear fiber,” IEEE Photon. Technol. Lett. 20(24), 2066–2068 (2008). [CrossRef]
  22. Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009). [CrossRef]
  23. T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21(38–39), 3874–3899 (2009). [CrossRef]
  24. H. Zhang, D. Y. Tang, R. J. Knize, L. M. Zhao, Q. L. Bao, K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96(11), 111112 (2010). [CrossRef]
  25. H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, K. P. Loh, “Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene,” Opt. Express 17(20), 17630–17635 (2009). [CrossRef] [PubMed]
  26. L. M. Zhao, D. Y. Tang, H. Zhang, X. Wu, Q. L. Bao, K. P. Loh, “Dissipative soliton operation of an ytterbium-doped fiber laser mode locked with atomic multilayer graphene,” Opt. Lett. 35(21), 3622–3624 (2010). [CrossRef] [PubMed]
  27. H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, K. P. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95(14), 141103 (2009). [CrossRef]
  28. Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010). [CrossRef] [PubMed]
  29. A. Martinez, K. Fuse, B. Xu, S. Yamashita, “Optical deposition of graphene and carbon nanotubes in a fiber ferrule for passive mode-locked lasing,” Opt. Express 18(22), 23054–23061 (2010). [CrossRef] [PubMed]
  30. H. Kim, J. Cho, S. Y. Jang, Y. W. Song, “Deformation-immunized optical deposition of graphene for ultrafast pulsed lasers,” Appl. Phys. Lett. 98(2), 021104 (2011). [CrossRef]
  31. J. Z. Wang, Z. Q. Luo, M. Zhou, C. C. Ye, H. Y. Fu, Z. P. Cai, H. H. Cheng, H. Y. Xu, W. Qi, “Evanescent-light deposition of graphene onto tapered fibers for passive Q-switch and mode-locker,” IEEE Photon. J. 4(5), 1295–1305 (2012). [CrossRef]
  32. P. F. Zhu, Z. B. Lin, Q. Y. Ning, Z. R. Cai, X. B. Xing, J. Liu, W. C. Chen, Z. C. Luo, A. P. Luo, W. C. Xu, “Passive harmonic mode-locking in a fiber laser by using a microfiber-based graphene saturable absorber,” Laser Phys. Lett. 10(10), 105107 (2013). [CrossRef]
  33. Y. Wu, B. Yao, Y. Cheng, Y. Rao, Y. Gong, X. Zhou, B. Wu, K. S. Chiang, “Four-wave mixing in a microfiber attached onto a graphene film,” IEEE Photon. Technol. Lett. 26(3), 249–252 (2014). [CrossRef]
  34. K. Kashiwagi, S. Yamashita, “Deposition of carbon nanotubes around microfiber via evanascent light,” Opt. Express 17(20), 18364–18370 (2009). [CrossRef] [PubMed]
  35. B. G. Bale, J. N. Kutz, A. Chong, W. H. Renninger, F. W. Wise, “Spectral filtering for high-energy mode-locking in normal dispersion fiber lasers,” J. Opt. Soc. Am. B 25(10), 1763–1770 (2008). [CrossRef]
  36. A. Haboucha, H. Leblond, M. Salhi, A. Komarov, F. Sanchez, “Analysis of soliton pattern formation in passively mode-locked fiber lasers,” Phys. Rev. A 78(4), 043806 (2008). [CrossRef]
  37. A. Komarov, H. Leblond, F. Sanchez, “Multistability and hysteresis phenomena in passively mode-locked fiber lasers,” Phys. Rev. A 71(5), 053809 (2005). [CrossRef]
  38. Z. C. Luo, A. P. Luo, W. C. Xu, “Tunable and switchable multiwavelength passively mode-locked fiber laser based on SESAM and inline birefringence comb filter,” IEEE Photon. J. 3(1), 64–70 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited