OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 9 — May. 5, 2014
  • pp: 10975–10986

Dual-polarization multi-band optical OFDM transmission and transceiver limitations for up to 500 Gb/s uncompensated long-haul links

E. Giacoumidis, M. A. Jarajreh, S. Sygletos, S. T. Le, F. Farjady, A. Tsokanos, A. Hamié, E. Pincemin, Y. Jaouën, A. D. Ellis, and N. J. Doran  »View Author Affiliations


Optics Express, Vol. 22, Issue 9, pp. 10975-10986 (2014)
http://dx.doi.org/10.1364/OE.22.010975


View Full Text Article

Enhanced HTML    Acrobat PDF (2979 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A number of critical issues for dual-polarization single- and multi-band optical orthogonal-frequency division multiplexing (DP-SB/MB-OFDM) signals are analyzed in dispersion compensation fiber (DCF)-free long-haul links. For the first time, different DP crosstalk removal techniques are compared, the maximum transmission-reach is investigated, and the impact of subcarrier number and high-level modulation formats are explored thoroughly. It is shown, for a bit-error-rate (BER) of 10−3, 2000 km of quaternary phase-shift keying (QPSK) DP-MB-OFDM transmission is feasible. At high launched optical powers (LOP), maximum-likelihood decoding can extend the LOP of 40 Gb/s QPSK DP-SB-OFDM at 2000 km by 1.5 dB compared to zero-forcing. For a 100 Gb/s DP-MB-OFDM system, a high number of subcarriers contribute to improved BER but at the cost of digital signal processing computational complexity, whilst by adapting the cyclic prefix length the BER can be improved for a low number of subcarriers. In addition, when 16-quadrature amplitude modulation (16QAM) is employed the digital-to-analogue/analogue-to-digital converter (DAC/ADC) bandwidth is relaxed with a degraded BER; while the ‘circular’ 8QAM is slightly superior to its ‘rectangular’ form. Finally, the transmission of wavelength-division multiplexing DP-MB-OFDM and single-carrier DP-QPSK is experimentally compared for up to 500 Gb/s showing great potential and similar performance at 1000 km DCF-free G.652 line.

© 2014 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.1660) Fiber optics and optical communications : Coherent communications
(060.2430) Fiber optics and optical communications : Fibers, single-mode
(060.4080) Fiber optics and optical communications : Modulation
(060.5060) Fiber optics and optical communications : Phase modulation

ToC Category:
Optical Communications

History
Original Manuscript: January 24, 2014
Revised Manuscript: April 9, 2014
Manuscript Accepted: April 12, 2014
Published: April 30, 2014

Citation
E. Giacoumidis, M. A. Jarajreh, S. Sygletos, S. T. Le, F. Farjady, A. Tsokanos, A. Hamié, E. Pincemin, Y. Jaouën, A. D. Ellis, and N. J. Doran, "Dual-polarization multi-band optical OFDM transmission and transceiver limitations for up to 500 Gb/s uncompensated long-haul links," Opt. Express 22, 10975-10986 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-9-10975


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. L. Jansen, I. Morita, T. C. W. Schenk, N. Takeda, H. Tanaka, “Coherent optical 25.8-Gb/s OFDM transmission over 4160-km SSMF,” IEEE J. Lightw. Techn. 26(1), 6–15 (2008). [CrossRef]
  2. B. J. C. Schmidt, A. J. Lowery, and J. Armstrong, “Experimental demonstrations of 20 Gbit/s direct-detection optical OFDM and 12 Gbit/s with a colorless transmitter,” in Proc. Opt. Fiber Commun. Conf., Anaheim, CA, 2007, Paper PDP18.
  3. S. C. J. Lee, F. Breyer, S. Randel, M. Schuster, J. Zeng, F. Huijskens, H. P. A. van den Boom, A. M. J. Koonen, and N. Hanik, “24-Gb/s transmission over 730 m of multimode fiber by direct modulation of an 850-nm VCSEL using discrete multi-tone modulation,” in Proc. Opt. Fiber Commun. Conf., Anaheim, CA, 2007, Paper PDP6.
  4. W. Shieh, X. Yi, Y. Tang, “Transmission experiment of multi-gigabit coherent optical OFDM systems over 1000 km SSMF fibre,” Electron. Lett. 43(3), 183–184 (2007). [CrossRef]
  5. S. L. Jansen, I. Morita, N. Takeda, and H. Tanaka, “20-Gb/s OFDM transmission over 4160-km SSMF enabled by RF-pilot tone phase noise compensation,” in Proc. Opt. Fiber Commun. Conf. (OFC), Anaheim, CA, 2007, Paper PDP 15.
  6. S. L. Jansen, I. Morita, T. C. Schenk, H. Tanaka, “121.9-Gb/s PDM-OFDM Transmission With 2-b/s/Hz Spectral Efficiency Over 1000 km of SSMF,” IEEE J. Lightw. Techn. 27(3), 177–188 (2009). [CrossRef]
  7. D. Qian, N. Cvijetic, J. Hu, and T. Wang, “40-Gb/s MIMO-OFDM-PON using polarization multiplexing and direct-detection,” in Proc. Opt. Fiber Commun. Conf., Anaheim, CA, 2009, Paper OMV 3. [CrossRef]
  8. Alcatel-Lucent, 1830 PSS brochure, www.alcatel-lucent.com Ciena 6500 product data sheet, www.ciena.com
  9. H. Takahashi, S. L. Jansen, A. A. Amin, I. Morita, and H. Tanaka, “Comparison between Single-band and Multi-band optical OFDM at 120-Gb/s,” in Proc. Internat. Conf. on Opt. Internet (COIN 2008).
  10. R. Dischler, F. Buchali, and A. Klekamp, “Demonstration of bite rate variable ROADM functionality on an optical OFDM superchannel,” in Proc. Opt. Fiber Commun. Conf. (OFC), 2010, Paper OTuM7. [CrossRef]
  11. T. Sakamoto, T. Kawanishi, M. Izutsu, “Asymptotic formalism for ultraflat optical frequency comb generation using a Mach-Zehnder modulator,” Opt. Lett. 32(11), 1515–1517 (2007). [CrossRef] [PubMed]
  12. E. Giacoumidis, J. Karaki, E. Pincemin, C. Gosset, R. Le Bidan, E. Awwad, and Y. Jaouën, “100 Gb/s coherent optical polarization multiplexed Multi-band-OFDM (MB-OFDM) transmission for long-haul applications,” International Conference on Transparent Optical Networks (ICTON), 2012, Paper We.B1.2. [CrossRef]
  13. J. Karaki, E. Giacoumidis, D. Grot, T. Guillossou, C. Gosset, R. Le Bidan, T. Le Gall, Y. Jaouën, E. Pincemin, “Dual-polarization multi-band OFDM versus single-carrier DP-QPSK for 100 Gb/s long-haul WDM transmission over legacy infrastructure,” Opt. Express 21(14), 16982–16991 (2013). [CrossRef] [PubMed]
  14. J. Karaki, E. Pincemin, Y. Jaouën, and R. Le Bidan, “Frequency offset estimation in a Polarization-multiplexed coherent OFDM system stressed by chromatic dispersion and PMD,” in Proceedings of the Conference of Lasers and Electro-Optics (CLEO), (OSA, 2012), Paper CF1F.3. [CrossRef]
  15. K. Harako, D. Seya, T. Hirooka, M. Nakazawa, “640 Gbaud (1.28 Tbit/s/ch) optical Nyquist pulse transmission over 525 km with substantial PMD tolerance,” Opt. Express 21(18), 21062–21075 (2013). [CrossRef] [PubMed]
  16. E. Giacoumidis, J. L. Wei, X. L. Yang, A. Tsokanos, J. M. Tang, “Adaptive modulation-enabled WDM impairment reduction in multi-channel optical OFDM transmission systems for next generation PONs,” IEEE Journal of Photonics 2(2), 130–140 (2010). [CrossRef]
  17. S. L. Jansen, I. Morita, “Polarization-division-multiplexed coherent optical OFDM transmission enabled by MIMO processing,” High Spectral Density Optical Communication Technologies, Optical and Fiber Communications Reports 6(2), 167–178 (2010). [CrossRef]
  18. W. Shieh, X. Yi, Y. Ma, Q. Yang, “Coherent optical OFDM: has its time come?” [Invited], IEEE/OSA J. Opt. Netw. 7(3), 324–355 (2008).
  19. L. L. Hanzo, M. Munster, B. J. Choi, and T. Keller, OFDM and MC-CDMA for Broadband Multi-User Communications, WLANs and Broadcasting (Wiley-IEEE Press, 2003).
  20. X. Q. Jin, J. L. Wei, R. P. Giddings, T. Quinlan, S. Walker, J. M. Tang, “Experimental demonstrations and extensive comparisons of end-to-end real-time optical OFDM transceivers with adaptive bit and/or power loading,” IEEE Photonics Journal 3(3), 500–511 (2011). [CrossRef]
  21. S. Haykin, Communication Systems, 4th Ed. (Wiley & Sons Inc., 2001).
  22. S. Chen, Q. Yang, Y. Ma, W. Shieh, “Real-time multi-gigabit receiver for coherent optical MIMO-OFDM signals,” IEEE J. Lightw. Techn. 27(16), 3699–3704 (2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited