OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 9 — May. 5, 2014
  • pp: 10987–10994

Ultrafast all-optical modulation with hyperbolic metamaterial integrated in Si photonic circuitry

Andres D. Neira, Gregory A. Wurtz, Pavel Ginzburg, and Anatoly V. Zayats  »View Author Affiliations


Optics Express, Vol. 22, Issue 9, pp. 10987-10994 (2014)
http://dx.doi.org/10.1364/OE.22.010987


View Full Text Article

Enhanced HTML    Acrobat PDF (1778 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The integration of optical metamaterials within silicon integrated photonic circuitry bears significantly potential in the design of low-power, nanoscale footprint, all-optical functionalities. We propose a novel concept and provide detailed analysis of an on-chip ultrafast all-optical modulator based on an hyperbolic metamaterial integrated in a silicon waveguide. The anisotropic metamaterial based on gold nanorods is placed on top of the silicon waveguide to form a modulator with a 300x440x600 nm3 footprint. For the operating wavelength of 1.5 μm, the optimized geometry of the device has insertion loss of about 5 dB and a modulation depth of 35% with a sub-ps switching rate. The switching energy estimated from nonlinear transient dynamic numerical simulations is 3.7 pJ/bit when the transmission is controlled optically at a wavelength of 532 nm, resonant with the transverse plasmonic mode of the metamaterial. The switching mechanism is based on the control of the hybridization of eigenmodes in the metamaterial slab and the Si waveguide.

© 2014 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(130.4310) Integrated optics : Nonlinear
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(160.3918) Materials : Metamaterials
(130.4815) Integrated optics : Optical switching devices
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Integrated Optics

History
Original Manuscript: February 17, 2014
Revised Manuscript: March 20, 2014
Manuscript Accepted: March 24, 2014
Published: April 30, 2014

Citation
Andres D. Neira, Gregory A. Wurtz, Pavel Ginzburg, and Anatoly V. Zayats, "Ultrafast all-optical modulation with hyperbolic metamaterial integrated in Si photonic circuitry," Opt. Express 22, 10987-10994 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-9-10987


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Q. Xu, B. Schmidt, S. Pradhan, M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005). [CrossRef] [PubMed]
  2. B. Schmidt, Q. Xu, J. Shakya, S. Manipatruni, M. Lipson, “Compact electro-optic modulator on silicon-on-insulator substrates using cavities with ultra-small modal volumes,” Opt. Express 15(6), 3140–3148 (2007). [CrossRef] [PubMed]
  3. M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, P. M. Fauchet, “On-chip optical interconnect roadmap: challenges and critical directions,” IEEE J. Sel. Top. Quant. 12(6), 1699–1705 (2006). [CrossRef]
  4. D. A. B. Miller, H. M. Ozaktas, “Limit to the bit-rate capacity of electrical interconnects from the aspect ratio of the system architecture,” J. Parallel Distrib. Comput. 41(1), 42–52 (1997). [CrossRef]
  5. D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009). [CrossRef]
  6. L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, J. Leuthold, “42.7 Gbit/s electro-optic modulator in silicon technology,” Opt. Express 19(12), 11841–11851 (2011). [CrossRef] [PubMed]
  7. S. G. Carter, V. Birkedal, C. S. Wang, L. A. Coldren, A. V. Maslov, D. S. Citrin, M. S. Sherwin, “quantum coherence in an optical modulator,” Science 310(5748), 651–653 (2005). [CrossRef] [PubMed]
  8. S. Kodama, T. Yoshimatsu, H. Ito, “500 Gbit/s optical gate monolithically integrating photodiode and electroabsorption modulator,” Electron. Lett. 40(9), 555–556 (2004). [CrossRef]
  9. A. V. Krasavin, T. P. Vo, W. Dickson, P. M. Bolger, A. V. Zayats, “All-Plasmonic modulation via stimulated emission of copropagating surface plasmon polaritons on a substrate with gain,” Nano Lett. 11(6), 2231–2235 (2011). [CrossRef] [PubMed]
  10. G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6(2), 107–111 (2011). [CrossRef] [PubMed]
  11. A. V. Krasavin, A. V. Zayats, “Photonic signal processing on electronic scales: electro-optical field-effect nanoplasmonic modulator,” Phys. Rev. Lett. 109(5), 053901 (2012). [CrossRef] [PubMed]
  12. J. Elser, R. Wangberg, V. A. Podolskiy, E. E. Narimanov, “Nanowire metamaterials with extreme optical anisotropy,” Appl. Phys. Lett. 89(26), 261102 (2006). [CrossRef]
  13. A. Poddubny, I. Iorsh, P. Belov, Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013). [CrossRef]
  14. J. J. A. Fleck, M. D. Feit, “Beam propagation in uniaxial anisotropic media,” J. Opt. Soc. Am. 73(7), 920–926 (1983). [CrossRef]
  15. R. E. Collin, Field theory of guided waves (Wiley, 1990).
  16. J. Y. Bigot, J. Y. Merle, O. Cregut, A. Daunois, “Electron dynamics in copper metallic nanoparticles probed with femtosecond optical pulses,” Phys. Rev. Lett. 75(25), 4702–4705 (1995). [CrossRef] [PubMed]
  17. J. Hohlfeld, S. S. Wellershoff, J. Güdde, U. Conrad, V. Jähnke, E. Matthias, “Electron and lattice dynamics following optical excitation of metals,” J. Chem. Phys. 251, 237–258 (2000).
  18. L. Jiang, H.-L. Tsai, “Improved two-temperature model and its application in ultrashort laser heating of metal films,” J. Heat Transfer 127(10), 1167–1173 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited