OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 9 — May. 5, 2014
  • pp: 11001–11010

Axial standing-wave illumination frequency-domain imaging (SWIF)

Benjamin Judkewitz and Changhuei Yang  »View Author Affiliations


Optics Express, Vol. 22, Issue 9, pp. 11001-11010 (2014)
http://dx.doi.org/10.1364/OE.22.011001


View Full Text Article

Enhanced HTML    Acrobat PDF (2571 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Despite their tremendous contribution to biomedical research and diagnosis, conventional spatial sampling techniques such as wide-field, point scanning or selective plane illumination microscopy face inherent limiting trade-offs between spatial resolution, field-of-view, phototoxicity and recording speed. Several of these trade-offs are the result of spatial sampling with diffracting beams. Here, we introduce a new strategy for fluorescence imaging, SWIF, which instead encodes the axial profile of a sample in the Fourier domain. We demonstrate how this can be achieved with propagation-invariant illumination patterns that extend over several millimeters and robustly propagate through layers of varying refractive index. This enabled us to image a lateral field-of-view of 0.8 mm x 1.5 mm with an axial resolution of 2.4 µm – greatly exceeding the lateral field-of-view of conventional illumination techniques (~100 µm) at comparable resolution. Thus, SWIF allowed us to surpass the limitations of diffracting illumination beams and untangle lateral field-of-view from resolution.

© 2014 Optical Society of America

OCIS Codes
(110.0180) Imaging systems : Microscopy
(110.6880) Imaging systems : Three-dimensional image acquisition
(110.2945) Imaging systems : Illumination design

ToC Category:
Microscopy

History
Original Manuscript: March 21, 2014
Revised Manuscript: April 22, 2014
Manuscript Accepted: April 23, 2014
Published: April 30, 2014

Virtual Issues
Vol. 9, Iss. 7 Virtual Journal for Biomedical Optics

Citation
Benjamin Judkewitz and Changhuei Yang, "Axial standing-wave illumination frequency-domain imaging (SWIF)," Opt. Express 22, 11001-11010 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-9-11001


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Minsky, “Microscopy Apparatus,” U.S. patent US 3013467 A (December 19, 1961).
  2. B. Bailey, D. L. Farkas, D. L. Taylor, F. Lanni, “Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation,” Nature 366(6450), 44–48 (1993). [CrossRef] [PubMed]
  3. H. Siedentopf, R. Zsigmondy, “Über Sichtbarmachung und Größenbestimmung ultramikoskopischer Teilchen, mit besonderer Anwendung auf Goldrubingläser,” Annalen der Physik 315(1), 1–39 (1902). [CrossRef]
  4. J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004). [CrossRef] [PubMed]
  5. H.-U. Dodt, U. Leischner, A. Schierloh, N. Jährling, C. P. Mauch, K. Deininger, J. M. Deussing, M. Eder, W. Zieglgänsberger, K. Becker, “Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain,” Nat. Methods 4(4), 331–336 (2007). [CrossRef] [PubMed]
  6. P. J. Keller, A. D. Schmidt, J. Wittbrodt, E. H. K. Stelzer, “Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy,” Science 322(5904), 1065–1069 (2008). [CrossRef] [PubMed]
  7. J. Huisken, D. Y. R. Stainier, “Selective plane illumination microscopy techniques in developmental biology,” Development 136(12), 1963–1975 (2009). [CrossRef] [PubMed]
  8. J. Mertz, “Optical sectioning microscopy with planar or structured illumination,” Nat. Methods 8(10), 811–819 (2011). [CrossRef] [PubMed]
  9. J. Palero, S. I. C. O. Santos, D. Artigas, P. Loza-Alvarez, “A simple scanless two-photon fluorescence microscope using selective plane illumination,” Opt. Express 18(8), 8491–8498 (2010). [CrossRef] [PubMed]
  10. T. V. Truong, W. Supatto, D. S. Koos, J. M. Choi, S. E. Fraser, “Deep and fast live imaging with two-photon scanned light-sheet microscopy,” Nat. Methods 8(9), 757–760 (2011). [CrossRef] [PubMed]
  11. J. Huisken, D. Y. R. Stainier, “Even fluorescence excitation by multidirectional selective plane illumination microscopy (mSPIM),” Opt. Lett. 32(17), 2608–2610 (2007). [CrossRef] [PubMed]
  12. U. Krzic, S. Gunther, T. E. Saunders, S. J. Streichan, L. Hufnagel, “Multiview light-sheet microscope for rapid in toto imaging,” Nat. Methods 9(7), 730–733 (2012). [CrossRef] [PubMed]
  13. R. Tomer, K. Khairy, F. Amat, P. J. Keller, “Quantitative high-speed imaging of entire developing embryos with simultaneous multiview light-sheet microscopy,” Nat. Methods 9(7), 755–763 (2012). [CrossRef] [PubMed]
  14. R. M. Herman, T. A. Wiggins, “Production and uses of diffractionless beams,” JOSA A 8(6), 932–942 (1991). [CrossRef]
  15. F. O. Fahrbach, A. Rohrbach, “Propagation stability of self-reconstructing Bessel beams enables contrast-enhanced imaging in thick media,” Nat Commun 3, 632 (2012). [CrossRef] [PubMed]
  16. F. O. Fahrbach, P. Simon, A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photonics 4(11), 780–785 (2010). [CrossRef]
  17. T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–423 (2011). [CrossRef] [PubMed]
  18. L. Gao, L. Shao, C. D. Higgins, J. S. Poulton, M. Peifer, M. W. Davidson, X. Wu, B. Goldstein, E. Betzig, “Noninvasive imaging beyond the diffraction limit of 3D dynamics in thickly fluorescent specimens,” Cell 151(6), 1370–1385 (2012). [CrossRef] [PubMed]
  19. D. Feldkhun, K. H. Wagner, “Doppler encoded excitation pattern tomographic optical microscopy,” Appl. Opt. 49(34), H47–H63 (2010). [CrossRef] [PubMed]
  20. A. F. Fercher, C. K. Hitzenberger, G. Kamp, S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995). [CrossRef]
  21. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7(3), 457–463 (2002). [CrossRef] [PubMed]
  22. M. Choma, M. Sarunic, C. Yang, J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003). [CrossRef] [PubMed]
  23. E. R. Dowski, W. T. Cathey, “Extended depth of field through wave-front coding,” Appl. Opt. 34(11), 1859–1866 (1995). [CrossRef] [PubMed]
  24. W. T. Cathey, E. R. Dowski, “New paradigm for imaging systems,” Appl. Opt. 41(29), 6080–6092 (2002). [CrossRef] [PubMed]
  25. M. Levoy, R. Ng, A. Adams, M. Footer, M. Horowitz, “Light field microscopy,” Acm T Graphic 25(3), 924–934 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

Supplementary Material


» Media 1: AVI (3799 KB)     
» Media 2: AVI (6504 KB)     
» Media 3: AVI (4564 KB)     
» Media 4: AVI (945 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited