OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 9 — May. 5, 2014
  • pp: 11061–11069

Terahertz phase contrast imaging of sorption kinetics in porous coordination polymer nanocrystals using differential optical resonator

F. Blanchard, K. Sumida, C. Wolpert, M. Tsotsalas, T. Tanaka, A. Doi, S. Kitagawa, D. G. Cooke, S. Furukawa, and K. Tanaka  »View Author Affiliations

Optics Express, Vol. 22, Issue 9, pp. 11061-11069 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1614 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The enhancement of light-matter coupling when light is confined to wavelength scale volumes is useful both for studying small sample volumes and increasing the overall sensing ability. At these length scales, nonradiative interactions are of key interest to which near-field optical techniques may reveal new phenomena facilitating next-generation material functionalities and applications. Efforts to develop novel chemical or biological sensors using metamaterials have yielded innovative ideas in the optical and terahertz frequency range whereby the spatially integrated response over a resonator structure is monitored via the re-radiated or leaked light. But although terahertz waves generally exhibit distinctive response in chemical molecules or biological tissue, there is little absorption for subwavelength size sample and therefore poor image contrast. Here, we introduce a method that spatially resolves the differential near-field phase response of the entire resonator as a spectral fingerprint. By simultaneously probing two metallic ring resonators, where one loaded with the sample of interest, the differential phase response is able to resolve the presence of guest molecules (e.g. methanol) as they are adsorbed or released within the pores of a prototypical porous coordination polymer.

© 2014 Optical Society of America

OCIS Codes
(160.3918) Materials : Metamaterials
(180.4243) Microscopy : Near-field microscopy
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:
Terahertz Optics

Original Manuscript: January 20, 2014
Revised Manuscript: March 7, 2014
Manuscript Accepted: March 12, 2014
Published: May 1, 2014

F. Blanchard, K. Sumida, C. Wolpert, M. Tsotsalas, T. Tanaka, A. Doi, S. Kitagawa, D. G. Cooke, S. Furukawa, and K. Tanaka, "Terahertz phase contrast imaging of sorption kinetics in porous coordination polymer nanocrystals using differential optical resonator," Opt. Express 22, 11061-11069 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. C. Nuss and J. Orenstein, “Terahertz Time-Domain Spectroscopy,” in Millimeter and Submillimeter Wave Spectroscopy of Solids, G. Grüner, ed., (Springer, Berlin, 1998).
  2. D. Mittleman, Sensing with Terahertz Radiation (Springer-Verlag, 2003).
  3. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007). [CrossRef]
  4. M. Walther, B. M. Fischer, A. Ortner, A. Bitzer, A. Thoman, H. Helm, “Chemical sensing and imaging with pulsed terahertz radiation,” Anal. Bioanal. Chem. 397(3), 1009–1017 (2010). [CrossRef] [PubMed]
  5. P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005). [CrossRef] [PubMed]
  6. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010). [CrossRef] [PubMed]
  7. L. Novotny, H. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011). [CrossRef]
  8. N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010). [CrossRef] [PubMed]
  9. D. Brinks, M. Castro-Lopez, R. Hildner, N. F. van Hulst, “Plasmonic antennas as design elements for coherent ultrafast nanophotonics,” Proc. Natl. Acad. Sci. U.S.A. 110(46), 18386–18390 (2013). [CrossRef] [PubMed]
  10. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998). [CrossRef]
  11. P. H. Bolivar, M. Nagel, F. Richter, M. Brucherseifer, H. Kurz, A. Bosserhoff, R. Büttner, “Label-free THz sensing of genetic sequences: towards ‘THz biochips’,” Philos. T. Roy. Soc. A 362(1815), 323–335 (2004). [CrossRef]
  12. N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009). [CrossRef]
  13. J. R. Knab, A. J. L. Adam, R. Chakkittakandy, P. C. M. Planken, “Terahertz near-field microspectroscopy,” Appl. Phys. Lett. 97(3), 031115 (2010). [CrossRef]
  14. H. Tao, W. J. Padilla, X. Zhang, R. D. Averitt, “Recent Progress in Electromagnetic Metamaterial Devices for Terahertz Applications,” IEEE J. Sel. Top. Quantum Electron. 17(1), 92–101 (2011). [CrossRef]
  15. J. R. Knab, A. J. L. Adam, E. Shaner, H. J. A. J. Starmans, P. C. M. Planken, “Terahertz near-field spectroscopy of filled subwavelength sized apertures in thin metal films,” Opt. Express 21(1), 1101–1112 (2013). [CrossRef] [PubMed]
  16. K. L. Wang, D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004). [CrossRef] [PubMed]
  17. J. Zhang, D. Grischkowsky, “Waveguide terahertz time-domain spectroscopy of nanometer water layers,” Opt. Lett. 29(14), 1617–1619 (2004). [CrossRef] [PubMed]
  18. A. J. L. Adam, “Review of Near-Field Terahertz Measurement Methods and Their Applications,” Int. J. Infrared Millim. Waves 32(8-9), 976–1019 (2011). [CrossRef]
  19. P. C. M. Planken, A. J. L. Adam, D. Kim, “Terahertz Near-Field Imaging,” Spr. Ser. Opt. Sci. 171, 389–413 (2013). [CrossRef]
  20. F. Blanchard, A. Doi, T. Tanaka, K. Tanaka, “Real-Time, Subwavelength Terahertz Imaging,” Annu. Rev. Mater. Res. 43(1), 237–259 (2013). [CrossRef]
  21. H. Hirori, A. Doi, F. Blanchard, K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett. 98(9), 091106 (2011). [CrossRef]
  22. M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012). [CrossRef] [PubMed]
  23. O. M. Yaghi, M. O’Keeffe, N. W. Ockwig, H. K. Chae, M. Eddaoudi, J. Kim, “Reticular synthesis and the design of new materials,” Nature 423(6941), 705–714 (2003). [CrossRef] [PubMed]
  24. H. Uehara, S. Diring, S. Furukawa, Z. Kalay, M. Tsotsalas, M. Nakahama, K. Hirai, M. Kondo, O. Sakata, S. Kitagawa, “Porous Coordination Polymer Hybrid Device with Quartz Oscillator: Effect of Crystal Size on Sorption Kinetics,” J. Am. Chem. Soc. 133(31), 11932–11935 (2011). [CrossRef] [PubMed]
  25. M. Tsotsalas, P. Hejcik, K. Sumida, Z. Kalay, S. Furukawa, S. Kitagawa, “Impact of Molecular Clustering inside Nanopores on Desorption Processes,” J. Am. Chem. Soc. 135(12), 4608–4611 (2013). [CrossRef] [PubMed]
  26. K. Schröck, F. Schröder, M. Heyden, R. A. Fischer, M. Havenith, “Characterization of interfacial water in MOF-5 (Zn4(O)(BDC)3)-a combined spectroscopic and theoretical study,” Phys. Chem. Chem. Phys. 10(32), 4732–4739 (2008). [CrossRef] [PubMed]
  27. L. Novotny and B. Hecht, Principles of Nano-Optics Second edition, (Cambridge University Press, 2012).
  28. C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008). [CrossRef]
  29. A. Doi, F. Blanchard, H. Hirori, K. Tanaka, “Near-field THz imaging of free induction decay from a tyrosine crystal,” Opt. Express 18(17), 18419–18424 (2010). [CrossRef] [PubMed]
  30. C. D. Abeyrathne, M. N. Halgamuge, P. M. Farrell, E. Skafidas, “An ab-initio Computational method to determine dielectric properties of biological materials,” Nature Sci. Rep. 3, 1796 (2013). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

Supplementary Material

» Media 1: AVI (2269 KB)     
» Media 2: AVI (2216 KB)     
» Media 3: AVI (2175 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited