OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 9 — May. 5, 2014
  • pp: 11070–11078

Photoinduced active terahertz metamaterials with nanostructured vanadium dioxide film deposited by sol-gel method

Yaxin Zhang, Shen Qiao, Linlin Sun, Qi Wu Shi, Wanxia Huang, Ling Li, and Ziqiang Yang  »View Author Affiliations

Optics Express, Vol. 22, Issue 9, pp. 11070-11078 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2433 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Applying the photoexcitation characteristics of vanadium dioxide (VO2), a dynamic resonant terahertz (THz) functional device with the combination of VO2 film and dual-resonance metamaterial was suggested to realize the ultrafast external spatial THz wave active manipulation. The designed metamaterial realizes a pass band at 0.28–0.36 THz between the dual-resonant frequencies, and the VO2 film is applied to control the transmittance of the spatial THz wave. More than an 80% modulation depth has been observed in the statics experiment, and the dynamic experimental results illustrate that this active metamaterial realizes up to a 1 MHz amplitude modulation signal loaded on a 0.34 THz carrier wave without any low noise amplified devices. The electromagnetic properties and photoinduced dynamic characteristics of this structure may have many potential applications in THz functional components, including modulators, intelligent switches, and sensors.

© 2014 Optical Society of America

OCIS Codes
(230.4110) Optical devices : Modulators
(160.3918) Materials : Metamaterials
(300.6495) Spectroscopy : Spectroscopy, teraherz
(310.6845) Thin films : Thin film devices and applications

ToC Category:
Terahertz Optics

Original Manuscript: January 21, 2014
Revised Manuscript: March 29, 2014
Manuscript Accepted: April 16, 2014
Published: May 1, 2014

Yaxin Zhang, Shen Qiao, Linlin Sun, Qi Wu Shi, Wanxia Huang, Ling Li, and Ziqiang Yang, "Photoinduced active terahertz metamaterials with nanostructured vanadium dioxide film deposited by sol-gel method," Opt. Express 22, 11070-11078 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007). [CrossRef]
  2. B. Ferguson, X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002). [CrossRef] [PubMed]
  3. P. H. Siegel, “Terahertz technology,” IEEE Trans. Microwave Theory 50(3), 910–928 (2002). [CrossRef]
  4. B. B. Hu, M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett. 20(16), 1716–1718 (1995). [CrossRef] [PubMed]
  5. K. Kawase, Y. Ogawa, Y. Watanabe, H. Inoue, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express 11(20), 2549–2554 (2003). [CrossRef] [PubMed]
  6. P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microw. Theory Tech. 52(10), 2438–2447 (2004). [CrossRef]
  7. J. Federici, L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys. 107(11), 111101 (2010). [CrossRef]
  8. T. Kosugi, A. Hirata, T. Nagatsuma, Y. Kado, “MM-wave long-range wireless systems,” IEEE Microw. Mag. 10(2), 68–76 (2009). [CrossRef]
  9. A. Hirata, T. Kosugi, H. Takahashi, R. Yamaguchi, F. Nakajima, T. Furuta, H. Ito, H. Sugahara, Y. Sato, T. Nagatsuma, “120-GHz-band millimeter-wave photonic wireless link for 10-Gbit/s data transmission,” IEEE Trans. Microw. Theory Tech. 54(5), 1937–1944 (2006). [CrossRef]
  10. H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008). [CrossRef] [PubMed]
  11. H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006). [CrossRef] [PubMed]
  12. H. T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93(9), 091117 (2008). [CrossRef]
  13. H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009). [CrossRef]
  14. H. Shen, M. Kafesaki, T. Koschny, L. Zhang, E. N. Economou, C. M. Soukoulis, “Broadband blueshift tunable metamaterials and dual-band switches,” Phys. Rev. B 79(16), 161102 (2009). [CrossRef]
  15. N. H. Shen, M. Massaouti, M. Gokkavas, J. M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, C. M. Soukoulis, “Optically implemented broadband blueshift switch in the terahertz regime,” Phys. Rev. Lett. 106(3), 037403 (2011). [CrossRef] [PubMed]
  16. D. Shrekenhamer, S. Rout, A. C. Strikwerda, C. Bingham, R. D. Averitt, S. Sonkusale, W. J. Padilla, “High speed terahertz modulation from metamaterials with embedded high electron mobility transistors,” Opt. Express 19(10), 9968–9975 (2011). [CrossRef] [PubMed]
  17. B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3, 780 (2012). [CrossRef] [PubMed]
  18. W. Withayachumnankul, D. Abbott, “Metamaterials in the terahertz regime,” IEEE Photonics J. 1(2), 99–118 (2009). [CrossRef]
  19. J. B. Pendry, D. Schurig, D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006). [CrossRef] [PubMed]
  20. Y. Yuan, C. Bingham, T. Tyler, S. Palit, T. H. Hand, W. J. Padilla, D. R. Smith, N. M. Jokerst, S. A. Cummer, “A dual-resonant terahertz metamaterial based on single-particle electric-field-coupled resonators,” Appl. Phys. Lett. 93(19), 191110 (2008). [CrossRef]
  21. Q. Cheng, T. J. Cui, W. X. Jiang, B. G. Cai, “An omnidirectional electromagnetic absorber made of metamaterials,” New J. Phys. 12(6), 063006 (2010). [CrossRef]
  22. Y. X. Zhang, S. Qiao, T. Zhao, W. Ling, S. G. Liu, “Planar symmetric normal and complementary three-resonance resonators in terahertz band,” Prog. Electromagnetics Res. 125, 21–35 (2012). [CrossRef]
  23. T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009). [CrossRef] [PubMed]
  24. Y. G. Jeong, H. Bernien, J. S. Kyoung, H. R. Park, H. S. Kim, J. W. Choi, B. J. Kim, H. T. Kim, K. J. Ahn, D. S. Kim, “Electrical control of terahertz nano antennas on VO2 thin film,” Opt. Express 19(22), 21211–21215 (2011). [CrossRef] [PubMed]
  25. G. Gopalakrishnan, D. Ruzmetov, S. Ramanathan, “On the triggering mechanism for the metal–insulator transition in thin film VO2 devices: electric field versus thermal effects,” J. Mater. Sci. 44(19), 5345–5353 (2009). [CrossRef]
  26. M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012). [CrossRef] [PubMed]
  27. M. Nakajima, N. Takubo, Z. Hiroi, Y. Ueda, T. Suemoto, “Photoinduced metallic state in VO2 proved by the terahertz pump-probe spectroscopy,” Appl. Phys. Lett. 92(1), 011907 (2008). [CrossRef]
  28. S. B. Choi, J. S. Kyoung, H. S. Kim, H. R. Park, D. J. Park, B. J. Kim, Y. H. Ahn, F. Rotermund, H. T. Kim, K. J. Ahn, K. J. Ahn, D. S. Kim, “Nanopattern enabled terahertz all-optical switching on vanadium dioxide thin film,” Appl. Phys. Lett. 98(7), 071105 (2011). [CrossRef]
  29. Z. Chen, Q. Y. Wen, K. Dong, D. D. Sun, D. H. Qiu, H. W. Zhang, “Ultrafast and broadband terahertz switching based on photo-induced phase transition in vanadium dioxide films,” Chin. Phys. Lett. 30(1), 017102 (2013). [CrossRef]
  30. E. Hendry, M. J. Lockyear, J. Gómez Rivas, L. Kuipers, M. Bonn, “Ultrafast optical switching of the THz transmission through metallic subwavelength hole arrays,” Phys. Rev. B 75(23), 235305 (2007). [CrossRef]
  31. Q. W. Shi, W. X. Huang, J. Wu, Y. X. Zhang, Y. J. Xu, Y. Zhang, S. Qiao, J. Z. Yan, “Enhanced hydrophilicity of the Si substrate for deposition of VO2 film by sol–gel method,” J. Mater. Sci. 23, 1610–1615 (2012).
  32. Q. W. Shi, W. X. Huang, Y. X. Zhang, J. Z. Yan, Y. B. Zhang, M. Mao, Y. Zhang, M. J. Tu, “Giant phase transition properties at terahertz range in VO₂ films deposited by sol-gel method,” ACS Appl. Mater. Interfaces 3(9), 3523–3527 (2011). [CrossRef] [PubMed]
  33. Y. X. Zhang, S. Qiao, W. X. Huang, W. Ling, L. Li, S.- Liu, “Asymmetric single-particle triple-resonant metamaterial in terahertz band,” Appl. Phys. Lett. 99(7), 073111 (2011). [CrossRef]
  34. M. F. Becker, A. B. Buckman, R. M. Walser, T. Lépine, P. Georges, A. Brun, “Femtosecond laser excitation dynamics of the semiconductormetal phase transition in VO2,” J. Appl. Phys. 79(5), 2404–2408 (1996). [CrossRef]
  35. S. Lysenko, A. Rúa, V. Vikhnin, F. Fernández, H. Liu, “Insulator-to-metal phase transition and recovery processes in VO2 thin films after femtosecond laser excitation,” Phys. Rev. B 76(3), 035104 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited