OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 9 — May. 5, 2014
  • pp: 11090–11098

Graphene oxide-based waveguide polariser: From thin film to quasi-bulk

W. H. Lim, Y. K. Yap, W. Y. Chong, C. H. Pua, N. M. Huang, R. M. De La Rue, and H. Ahmad  »View Author Affiliations

Optics Express, Vol. 22, Issue 9, pp. 11090-11098 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (4681 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Abstract: We have demonstrated a broadband waveguide polariser with high extinction ratio on a polymer optical waveguide coated with graphene oxide via the drop-casting method. The highest extinction ratio of nearly 40 dB is measured at 1590 nm, with a variation of 4.5 dB across a wavelength range from 1530 nm to 1630 nm, a ratio that is (to our knowledge) the highest reported for graphene-based waveguide polarisers to date. This result is achieved with a graphene oxide coating length along the propagation direction of only 1.3 mm and a bulk film thickness of 2.0 µm. The underlying principles of the strongly polarisation dependent propagation loss demonstrated have been studied and are attributed to the anisotropic complex dielectric function of graphene oxide bulk film.

© 2014 Optical Society of America

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(230.0230) Optical devices : Optical devices
(130.5440) Integrated optics : Polarization-selective devices

ToC Category:
Integrated Optics

Original Manuscript: February 5, 2014
Revised Manuscript: March 27, 2014
Manuscript Accepted: March 30, 2014
Published: May 1, 2014

W. H. Lim, Y. K. Yap, W. Y. Chong, C. H. Pua, N. M. Huang, R. M. De La Rue, and H. Ahmad, "Graphene oxide-based waveguide polariser: From thin film to quasi-bulk," Opt. Express 22, 11090-11098 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. C. Hutchings, B. M. Holmes, “A waveguide polarization toolset design based on mode beating,” IEEE Photon. 3, 450 (2011).
  2. K. Kikuchi, S. Tsukamoto, “Evaluation of sensitivity of the digital coherent receiver,” J. Lightwave Technol. 26(13), 1817–1822 (2008). [CrossRef]
  3. S. M. Ohja, C. Cureton, T. Bricheno, S. Day, D. Moule, A. J. Bell, J. Taylor, “Simple method of fabricating polarisation-insensitive and very low crosstalk AWG grating devices,” Electron. Lett. 34(1), 78–79 (1998). [CrossRef]
  4. C. K. Nadler, E. K. Wildermuth, M. Lanker, W. Hunziker, H. Melchior, “Polarization insensitive, low-loss, low-crosstalk wavelength multiplexer modules,” IEEE J. Sel. Top. Quant 5(5), 1407–1412 (1999). [CrossRef]
  5. J. J. He, E. S. Koteles, B. Lamontagne, L. Erickson, A. Delage, M. Davies, “Integrated polarization compensator for WDM waveguide demultiplexers,” IEEE Photon. Technol. Lett. 11(2), 224–226 (1999). [CrossRef]
  6. A. Morand, C. Sanchez-Perez, P. Benech, S. Tedjini, D. Bose, “Integrated optical waveguide polarizer on glass with a birefringent polymer overlay,” IEEE Photon. Technol. Lett. 10(11), 1599–1601 (1998). [CrossRef]
  7. H. Lin, J. Ning, G. Fan, “A waveguide polarizer based on Si-coated Ti:LiNbO3 planar structure,” Chin. Opt. Lett. 2, 89 (2004).
  8. D. Dai, Z. Wang, N. Julian, J. E. Bowers, “Compact broadband polarizer based on shallowly-etched silicon-on-insulator ridge optical waveguides,” Opt. Express 18(26), 27404–27415 (2010). [CrossRef] [PubMed]
  9. J. R. Feth, C. L. Chang, “Metal-clad fiber-optic cutoff polarizer,” Opt. Lett. 11(6), 386–388 (1986). [CrossRef] [PubMed]
  10. Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, W. Wang, D. Y. Tang, K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011). [CrossRef]
  11. J. T. Kim, S.-Y. Choi, “Graphene-based plasmonic waveguides for photonic integrated circuits,” Opt. Express 19(24), 24557–24562 (2011). [CrossRef] [PubMed]
  12. J. T. Kim, C.-G. Choi, “Graphene-based polymer waveguide polarizer,” Opt. Express 20(4), 3556–3562 (2012). [CrossRef] [PubMed]
  13. P. Sun, R. Ma, K. Wang, M. Zhong, J. Wei, D. Wu, T. Sasaki, H. Zhu, “Suppression of the coffee-ring effect by self-assembling graphene oxide and monolayer titania,” Nanotechnology 24(7), 075601 (2013). [CrossRef] [PubMed]
  14. D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B. Dommett, G. Evmenenko, S. T. Nguyen, R. S. Ruoff, “Preparation and characterization of graphene oxide paper,” Nature 448(7152), 457–460 (2007). [CrossRef] [PubMed]
  15. G. Eda, A. Nathan, P. Wöbkenberg, F. Colleaux, K. Ghaffarzadeh, T. D. Anthopoulos, M. Chhowalla, “Graphene oxide gate dielectric for graphene-based monolithic field effect transistors,” Appl. Phys. Lett. 102(13), 133108 (2013). [CrossRef]
  16. N. M. Huang, H. N. Lim, C. H. Chia, M. A. Yarmo, M. R. Muhamad, “Simple room-temperature preparation of high-yield large-area graphene oxide,” Int. J. Nanomedicine 6, 3443–3448 (2011). [CrossRef] [PubMed]
  17. A. Buchsteiner, A. Lerf, J. Pieper, “Water dynamics in graphite oxide investigated with neutron scattering,” J. Phys. Chem. B 110(45), 22328–22338 (2006). [CrossRef] [PubMed]
  18. A. Lerf, A. Buchsteiner, J. Pieper, S. Schöttl, I. Dekany, T. Szabo, H. P. Boehm, “Hydration behavior and dynamics of water molecules in graphite oxide,” J. Phys. Chem. Solids 67(5-6), 1106–1110 (2006). [CrossRef]
  19. M. Vaupel, U. Stoberl, “Appication note: graphene and graphene oxide,” http://www.nanofilm.de/sales-support/downloads/application-notes/applicationnote_graphene.pdf .
  20. K. P. Loh, Q. Bao, G. Eda, M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem. 2(12), 1015–1024 (2010). [CrossRef] [PubMed]
  21. J. T. Hong, K. M. Lee, B. H. Son, S. J. Park, D. J. Park, J.-Y. Park, S. Lee, Y. H. Ahn, “Terahertz conductivity of reduced graphene oxide films,” Opt. Express 21(6), 7633–7640 (2013). [CrossRef] [PubMed]
  22. K. M. Davis, K. Miura, N. Sugimoto, K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited