OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 9 — May. 5, 2014
  • pp: 11099–11106

Characterization of the spatiotemporal evolution of ultrashort optical pulses using FROG holography

Nikhil Mehta, Chuan Yang, Yong Xu, and Zhiwen Liu  »View Author Affiliations


Optics Express, Vol. 22, Issue 9, pp. 11099-11106 (2014)
http://dx.doi.org/10.1364/OE.22.011099


View Full Text Article

Enhanced HTML    Acrobat PDF (1273 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose holographically recorded frequency-resolved-optical-gating (FROG) measurement for probing the evolution of ultrashort optical pulses at multiple locations. As a proof-of-concept demonstration of our method, we record holographic FROG traces at five axial locations as we traverse through the focus of an objective lens along its axis using BaTiO3 micro-cluster as the nonlinear medium and retrieve the amplitude and phase of the ultrashort pulse at each location. Moreover, the group delay of the pulse retrieved numerically using FROG holography is used to compute the separation between the five locations which agree well with the experimentally measured distances. This study suggests that FROG holography can be used to remove the ambiguity regarding arbitrary constant phase and arbitrary temporal shift in the retrieved pulse at each location (upto to an overall constant phase).

© 2014 Optical Society of America

OCIS Codes
(070.4340) Fourier optics and signal processing : Nonlinear optical signal processing
(100.5070) Image processing : Phase retrieval
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(100.0118) Image processing : Imaging ultrafast phenomena
(090.6186) Holography : Spectral holography

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: February 17, 2014
Revised Manuscript: April 14, 2014
Manuscript Accepted: April 14, 2014
Published: May 1, 2014

Citation
Nikhil Mehta, Chuan Yang, Yong Xu, and Zhiwen Liu, "Characterization of the spatiotemporal evolution of ultrashort optical pulses using FROG holography," Opt. Express 22, 11099-11106 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-9-11099


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Zeidler, T. Hornung, D. Proch, M. Motzkus, “Adaptive compression of tunable pulses from a noncollinear-type OPA to below 16 fs by feedback-controlled pulse shaping,” Appl. Phys. B 70(S1), S125–S131 (2000). [CrossRef]
  2. S. Demmler, J. Rothhardt, A. M. Heidt, A. Hartung, E. G. Rohwer, H. Bartelt, J. Limpert, A. Tünnermann, “Generation of high quality, 1.3 cycle pulses by active phase control of an octave spanning supercontinuum,” Opt. Express 19(21), 20151–20158 (2011). [CrossRef] [PubMed]
  3. C. W. Freudiger, W. Min, G. R. Holtom, B. Xu, M. Dantus, X. S. Xie, “Highly specific label-free molecular imaging with spectrally tailored excitation stimulated Raman scattering (STE-SRS) microscopy,” Nat. Photonics 5(2), 103–109 (2011). [CrossRef] [PubMed]
  4. R. Hildner, D. Brinks, N. F. van Hulst, “Femtosecond coherence and quantum control of single molecules at room temperature,” Nat. Phys. 7(2), 172–177 (2011). [CrossRef]
  5. P. Nuernberger, G. Vogt, T. Brixner, G. Gerber, “Femtosecond quantum control of molecular dynamics in the condensed phase,” Phys. Chem. Chem. Phys. 9(20), 2470–2497 (2007). [CrossRef] [PubMed]
  6. D. Brinks, F. D. Stefani, F. Kulzer, R. Hildner, T. H. Taminiau, Y. Avlasevich, K. Müllen, N. F. van Hulst, “Visualizing and controlling vibrational wave packets of single molecules,” Nature 465(7300), 905–908 (2010). [CrossRef] [PubMed]
  7. M. I. Stockman, S. V. Faleev, D. J. Bergman, “Coherent control of femtosecond energy localization in nanosystems,” Phys. Rev. Lett. 88(6), 067402 (2002). [CrossRef] [PubMed]
  8. M. Shapiro, P. Brumer, “Quantum control of bound and continuum state dynamics,” Phys. Rep. 425(4), 195–264 (2006). [CrossRef]
  9. M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, S. Cunovic, F. Dimler, A. Fischer, W. Pfeiffer, M. Rohmer, C. Schneider, F. Steeb, C. Strüber, D. V. Voronine, “Spatiotemporal control of nanooptical excitations,” Proc. Natl. Acad. Sci. U.S.A. 107(12), 5329–5333 (2010). [CrossRef] [PubMed]
  10. J. C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena, 2nd ed. (Academic Press, 2006).
  11. R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Kluwer Academic Publishers, 2002).
  12. C. Iaconis, I. A. Walmsley, “Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses,” Opt. Lett. 23(10), 792–794 (1998). [CrossRef] [PubMed]
  13. D. J. McCabe, A. Tajalli, D. R. Austin, P. Bondareff, I. A. Walmsley, S. Gigan, B. Chatel, “Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium,” Nat. Commun. 2, 447 (2011). [CrossRef] [PubMed]
  14. M. Durach, A. Rusina, M. I. Stockman, K. Nelson, “Toward full spatiotemporal control on the nanoscale,” Nano Lett. 7(10), 3145–3149 (2007). [CrossRef] [PubMed]
  15. T. Tanabe, H. Tanabe, Y. Teramura, F. Kannari, “Spatiotemporal measurements based on spatial spectral interferometry for ultrashort optical pulses shaped by a Fourier pulse shaper,” J. Opt. Soc. Am. B 19(11), 2795–2802 (2002). [CrossRef]
  16. D. Meshulach, Y. Yelin, Y. Silberberg, “Real-time spatial–spectral interference measurements of ultrashort optical pulses,” J. Opt. Soc. Am. B 14, 2095–2098 (1997). [CrossRef]
  17. P. Bowlan, P. Gabolde, A. Shreenath, K. McGresham, R. Trebino, S. Akturk, “Crossed-beam spectral interferometry: a simple, high-spectral-resolution method for completely characterizing complex ultrashort pulses in real time,” Opt. Express 14(24), 11892–11900 (2006). [CrossRef] [PubMed]
  18. B. Alonso, Í. J. Sola, Ó. Varela, J. Hernández-Toro, C. Méndez, J. San Román, A. Zaïr, L. Roso, “Spatiotemporal amplitude-and-phase reconstruction by Fourier-transform of interference spectra of high-complex-beams,” J. Opt. Soc. Am. B 27(5), 933–940 (2010). [CrossRef]
  19. B. Alonso, R. Borrego-Varillas, O. Mendoza-Yero, Í. Sola, J. Román, G. Mínguez-Vega, L. Roso, “Frequency resolved wavefront retrieval and dynamics of diffractive focused ultrashort pulses,” J. Opt. Soc. Am. B 29(8), 1993–2000 (2012). [CrossRef]
  20. C. Dorrer, E. M. Kosik, I. A. Walmsley, “Direct space time-characterization of the electric fields of ultrashort optical pulses,” Opt. Lett. 27(7), 548–550 (2002). [CrossRef] [PubMed]
  21. P. Gabolde, R. Trebino, “Single-shot measurement of the full spatio-temporal field of ultrashort pulses with multi-spectral digital holography,” Opt. Express 14(23), 11460–11467 (2006). [CrossRef] [PubMed]
  22. P. Bowlan, U. Fuchs, R. Trebino, U. D. Zeitner, “Measuring the spatiotemporal electric field of tightly focused ultrashort pulses with sub-micron spatial resolution,” Opt. Express 16(18), 13663–13675 (2008). [CrossRef] [PubMed]
  23. J. Extermann, L. Bonacina, F. Courvoisier, D. Kiselev, Y. Mugnier, R. Le Dantec, C. Galez, J. P. Wolf, “Nano-FROG: Frequency resolved optical gating by a nanometric object,” Opt. Express 16(14), 10405–10411 (2008). [CrossRef] [PubMed]
  24. C. W. Siders, A. J. Taylor, M. C. Downer, “Multipulse interferometric frequency-resolved optical gating: real-time phase-sensitive imaging of ultrafast dynamics,” Opt. Lett. 22(9), 624–626 (1997). [CrossRef] [PubMed]
  25. H. Li, Z. Zhang, Q. Xu, K. Shi, Y. Jia, B. Zhang, Y. Xu, Z. Liu, “Characterizing ultrashort optical pulses using second-order nonlinear nanoprobes,” Appl. Phys. Lett. 97(26), 261108 (2010). [CrossRef]
  26. R. Trebino, D. J. Kane, “Using phase retrieval to measure the intensity and phase of ultrashort pulses: frequency-resolved optical gating,” J. Opt. Soc. Am. A 10(5), 1101–1111 (1993). [CrossRef]
  27. G. Stibenz, G. Steinmeyer, “Interferometric frequency-resolved optical gating,” Opt. Express 13(7), 2617–2626 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited