OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 9 — May. 5, 2014
  • pp: 11119–11128

650-nm 1 × 2 polymeric thermo-optic switch with low power consumption

Xi-Bin Wang, Jian Sun, Yu-Fen Liu, Jing-Wen Sun, Chang-Ming Chen, Xiao-Qiang Sun, Fei Wang, and Da-Ming Zhang  »View Author Affiliations

Optics Express, Vol. 22, Issue 9, pp. 11119-11128 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2727 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, a low-power 1 × 2 polymeric thermo-optic switch operating at the polymer optical fiber low-loss window of 650 nm was studied. The characteristic parameters of the switch were carefully designed and simulated. The fabrication was done by using standard semiconductor fabrication techniques such as spin-coating, photolithography, and dry etching. The device was fabricated based on poly(methyl methacrylate) (PMMA)-based materials with the Mach-Zehnder interferometer (MZI) structure. The device shows an extinction ratio of over 23.4 dB at 650 nm with a very low-power consumption of 5.3 mW. The measured switching rise time and fall time are 464.4 and 448.0 µs, respectively.

© 2014 Optical Society of America

OCIS Codes
(060.4510) Fiber optics and optical communications : Optical communications
(130.3130) Integrated optics : Integrated optics materials
(130.4815) Integrated optics : Optical switching devices
(130.5460) Integrated optics : Polymer waveguides

ToC Category:
Integrated Optics

Original Manuscript: February 24, 2014
Revised Manuscript: April 11, 2014
Manuscript Accepted: April 17, 2014
Published: May 1, 2014

Xi-Bin Wang, Jian Sun, Yu-Fen Liu, Jing-Wen Sun, Chang-Ming Chen, Xiao-Qiang Sun, Fei Wang, and Da-Ming Zhang, "650-nm 1 × 2 polymeric thermo-optic switch with low power consumption," Opt. Express 22, 11119-11128 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. Xie, T. Hashimoto, K. Utaka, “Very low-power, polarization-independent, and high-speed polymer thermooptic switch,” IEEE Photon. Technol. Lett. 21(24), 1861–1863 (2009). [CrossRef]
  2. A. Densmore, S. Janz, R. Ma, J. H. Schmid, D.-X. Xu, A. Delâge, J. Lapointe, M. Vachon, P. Cheben, “Compact and low power thermo-optic switch using folded silicon waveguides,” Opt. Express 17(13), 10457–10465 (2009). [CrossRef] [PubMed]
  3. Y. Enami, D. Mathine, C. T. DeRose, R. A. Norwood, J. Luo, A. K.-Y. Jen, N. Peyghambarian, “Hybrid electro-optic polymer/sol-gel waveguide directional coupler switches,” Appl. Phys. Lett. 94(21), 213513 (2009). [CrossRef]
  4. Y. Enami, B. Yuan, M. Tanaka, J. Luo, A. K.-Y. Jen, “Electro-optic polymer/TiO2 multilayer slot waveguide modulators,” Appl. Phys. Lett. 101(12), 123509 (2012). [CrossRef]
  5. D. Li, Y. Zhang, L. Liu, L. Xu, “Low consumption power variable optical attenuator with sol-gel derived organic/inorganic hybrid materials,” Opt. Express 14(13), 6029–6034 (2006). [CrossRef] [PubMed]
  6. D. Zhang, C. Chen, F. Wang, D. Zhang, “Optical gain and upconversion luminescence in LaF3: Er, Yb nanoparticles-doped organic-inorganic hybrid material waveguide amplifier,” Appl. Phys. B 98(4), 791–795 (2010). [CrossRef]
  7. G. Hu, B. Yun, Y. Ji, Y. Cui, “Crosstalk reduced and low power consumption polymeric thermo-optic switch,” Opt. Commun. 283(10), 2133–2135 (2010). [CrossRef]
  8. P. Sun, R. M. Reano, “Submilliwatt thermo-optic switches using free-standing silicon-on-insulator strip waveguides,” Opt. Express 18(8), 8406–8411 (2010). [CrossRef] [PubMed]
  9. M. Yonemura, A. Kawasaki, S. Kato, M. Kagami, Y. Inui, “Polymer waveguide module for visible wavelength division multiplexing plastic optical fiber communication,” Opt. Lett. 30(17), 2206–2208 (2005). [CrossRef] [PubMed]
  10. M. Asai, R. Hirose, A. Kondo, Y. Koike, “High-bandwidth graded-index plastic optical fiber by the dopant diffusion coextrusion process,” J. Lightwave Technol. 25(10), 3062–3067 (2007). [CrossRef]
  11. K. Peters, “Polymer optical fiber sensors—a review,” Smart Mater. Struct. 20(1), 013002 (2011). [CrossRef]
  12. X. Dai, J. He, Z. Liu, X. Ai, G. Yang, B. Han, J. Xu, “Stability of high-bandwidth graded-index polymer optical fiber,” J. Appl. Polym. Sci. 91(4), 2330–2334 (2004). [CrossRef]
  13. M. Asai, Y. Inuzuka, K. Koike, S. Takahashi, Y. Koike, “High-bandwidth graded-index plastic optical fiber with low-attenuation, high-bending ability, and high-thermal stalility for home-networks,” J. Lightwave Technol. 29(11), 1620–1626 (2011). [CrossRef]
  14. G. Giaretta, W. White, M. Wegmuller, T. Onishi, “High-speed (11 Gbit/s) data transmission using perfluorinated graded-index polymer optical fibers for short interconnects (<100 m),” IEEE Photon. Technol. Lett. 12(3), 347–349 (2000). [CrossRef]
  15. J. S. Kee, D. P. Poenar, P. Neužil, L. Yobaş, Y. Chen, “Design and fabrication of Poly(dimethylsiloxane) arrayed waveguide grating,” Opt. Express 18(21), 21732–21742 (2010). [CrossRef] [PubMed]
  16. M. A. Reilly, B. Coleman, E. Y. B. Pun, R. V. Penty, I. H. White, M. Ramon, R. Xia, D. D. C. Bradley, “Optical gain at 650 nm from a polymer waveguide with dye-doped cladding,” Appl. Phys. Lett. 87(23), 231116 (2005). [CrossRef]
  17. C. Chen, C. Han, L. Wang, H. Zhang, X. Sun, F. Wang, D. Zhang, “650-nm all-polymer thermo-optic waveguide switch arrays based on novel organic-inorganic grafting PMMA material,” IEEE J. Quantum Electron. 49(5), 447–453 (2013). [CrossRef]
  18. R. Wirth, B. Mayer, S. Kugler, K. Streubel, “Fast LEDs for polymer optical fiber communication at 650 nm,” Proc. SPIE 6013, 60130F (2005). [CrossRef]
  19. K.-C. D. Cheng, M.-L. V. Tse, G. Zhou, C.-F. J. Pun, W.-K. E. Chan, C. Lu, P. K. A. Wai, H.-Y. Tam, “Optimization of 3-hole-assisted PMMA optical fiber with double cladding for UV-induced FBG fabrication,” Opt. Express 17(4), 2080–2088 (2009). [CrossRef] [PubMed]
  20. M. Silva-López, A. Fender, W. N. MacPherson, J. S. Barton, J. D. C. Jones, D. Zhao, H. Dobb, D. J. Webb, L. Zhang, I. Bennion, “Strain and temperature sensitivity of a single-mode polymer optical fiber,” Opt. Lett. 30(23), 3129–3131 (2005). [CrossRef] [PubMed]
  21. G. Golojuch, U. Hollenbach, T. Mappes, J. Mohr, A. Urbanczyk, W. Urbanczyk, “Investigation of birefringence in PMMA channel waveguides inscribed with DUV radiation,” Meas. Sci. Technol. 19(2), 025304 (2008). [CrossRef]
  22. H. Y. Tang, W. H. Wong, E. Y. B. Pun, “Long period polymer waveguide grating device with positive temperature sensitivity,” Appl. Phys. B 79(1), 95–98 (2004). [CrossRef]
  23. C. Garcia, V. Coello, Z. Han, I. P. Radko, S. I. Bozhevolnyi, “Experimental characterization of dielectric-loaded plasmonic waveguide-racetrack resonators at near-infrared wavelengths,” Appl. Phys. B 107(2), 401–407 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited