OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 9 — May. 5, 2014
  • pp: 11129–11139

Optical length change measurement via RF frequency shift analysis of incoherent light source based optoelectronic oscillator

Xihua Zou, Ming Li, Wei Pan, Bin Luo, Lianshan Yan, and Liyang Shao  »View Author Affiliations


Optics Express, Vol. 22, Issue 9, pp. 11129-11139 (2014)
http://dx.doi.org/10.1364/OE.22.011129


View Full Text Article

Enhanced HTML    Acrobat PDF (1157 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Radio-frequency (RF) frequency shift of incoherent light source based optoelectronic oscillator (OEO) is employed to measure the optical length change. In the proposed OEO using an incoherent light source, the optical length under test is inserted in the optoelectronic hybrid loop. The frequency shift of RF oscillation modes at the output of the OEO reflects the optical length change, with the change being measured via frequency shift analysis. Two OEO configurations are theoretically designed and experimentally performed, while an amplified spontaneous emission (ASE) source serves as the incoherent light source. A linear relationship between the frequency shift and the optical length change has been confirmed for measurement, and a reconfigurable measurement sensitivity is available by selecting different oscillation modes. Moreover, the use of ASE greatly reduces the complexity and the cost for stabilization control on light source, while the derived results are consistent with that obtained in a laser source based OEO both in the measured optical length changes and the phase noise performance. A sensitivity of −28 KHz/cm, −480 KHz/cm or higher, and a resolution of nano-meter scale are obtained, which can be used to monitor the displacement, the changes in refractive index, temperature.

© 2014 Optical Society of America

OCIS Codes
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(230.0250) Optical devices : Optoelectronics
(230.4910) Optical devices : Oscillators
(280.4788) Remote sensing and sensors : Optical sensing and sensors
(060.5625) Fiber optics and optical communications : Radio frequency photonics

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: February 25, 2014
Revised Manuscript: April 2, 2014
Manuscript Accepted: April 2, 2014
Published: May 1, 2014

Citation
Xihua Zou, Ming Li, Wei Pan, Bin Luo, Lianshan Yan, and Liyang Shao, "Optical length change measurement via RF frequency shift analysis of incoherent light source based optoelectronic oscillator," Opt. Express 22, 11129-11139 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-9-11129


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. T. V. Grattan and B. T. Meggitt, Optical Fiber Sensors Technology: Devices and Technology (London, UK: Chapman & Hall, 1998).
  2. B. Culshaw, A. Kersey, “Fiber-optic sensing: a historical perspective,” J. Lightwave Technol. 26(9), 1064–1078 (2008). [CrossRef]
  3. C. Wang, J. Yao, “Ultrafast and ultrahigh-resolution interrogation of a fiber Bragg grating sensor based on interferometric temporal spectroscopy,” J. Lightwave Technol. 29(19), 2927–2933 (2011). [CrossRef]
  4. X. Zou, M. Li, W. Pan, L. Yan, J. Azaña, J. Yao, “All-fiber optical filter with an ultranarrow and rectangular spectral response,” Opt. Lett. 38(16), 3096–3098 (2013). [CrossRef] [PubMed]
  5. H. Z. Tang, W. L. Zhang, Y. J. Rao, Y. Y. Zhu, Z. N. Wang, “Spectrum-adjustable random lasing in single-mode fiber controlled by a FBG,” Opt. Laser Technol. 57, 100–103 (2014). [CrossRef]
  6. X. S. Yao, L. Maleki, “High frequency optical subcarrier generator,” Electron. Lett. 30(18), 1525–1526 (1994). [CrossRef]
  7. X. S. Yao, L. Maleki, “Optoelectronic microwave oscillator,” J. Opt. Soc. Am. B 13(8), 1725–1735 (1996). [CrossRef]
  8. W. Zhou, G. Blasche, “Injection-locked dual opto-electronic oscillator with ultra-low phase noise and ultra-low spurious level,” IEEE Trans. Microw. Theory Tech. 53(3), 929–933 (2005). [CrossRef]
  9. J. M. Kim, D. Cho, “Optoelectronic oscillator stabilized to an intra-loop Fabry-Perot cavity by a dual servo system,” Opt. Express 18(14), 14905–14912 (2010). [CrossRef] [PubMed]
  10. I. Ozdur, M. Akbulut, N. Hoghooghi, D. Mandridis, M. U. Piracha, P. J. Delfyett, “Optoelectronic loop design with 1000 finesse Fabry-Perot etalon,” Opt. Lett. 35(6), 799–801 (2010). [CrossRef] [PubMed]
  11. A. B. Matsko, D. Eliyahu, L. Maleki, “Theory of coupled optoelectronic microwave oscillator II: phase noise,” J. Opt. Soc. Am. B 30(12), 3316–3323 (2013). [CrossRef]
  12. W. Li, J. Yao, “An optically tunable optoelectronic oscillator,” J. Lightwave Technol. 28(18), 2640–2645 (2010). [CrossRef]
  13. W. Li, J. Yao, “A wideband frequency tunable optoelectronic oscillator incorporating a tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 60(6), 1735–1742 (2012). [CrossRef]
  14. F. Jiang, J. H. Wong, H. Q. Lam, J. Zhou, S. Aditya, P. H. Lim, K. E. K. Lee, P. P. Shum, X. Zhang, “An optically tunable wideband optoelectronic oscillator based on a bandpass microwave photonic filter,” Opt. Express 21(14), 16381–16389 (2013). [CrossRef] [PubMed]
  15. M. Li, W. Li, J. Yao, “Tunable optoelectronic oscillator incorporating a high-Q spectrum sliced photonic microwave transversal filter,” IEEE Photon. Technol. Lett. 24(14), 1251–1253 (2012). [CrossRef]
  16. M. Shin, P. Kumar, “Optical microwave frequency up-conversion via a frequency-doubling optoelectronic oscillator,” IEEE Photon. Technol. Lett. 19(21), 1726–1728 (2007). [CrossRef]
  17. L. X. Wang, N. H. Zhu, W. Li, J. G. Liu, “A frequency-doubling optoelectronic oscillator based on a dual-parallel Mach–Zehnder modulator and a chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 23(22), 1688–1690 (2011). [CrossRef]
  18. D. Zhu, S. Pan, D. Ben, “Tunable frequency-quadrupling dual-loop optoelectronic oscillator,” IEEE Photon. Technol. Lett. 24(3), 194–196 (2012). [CrossRef]
  19. X. Liu, W. Pan, X. Zou, D. Zheng, B. Luo, L. Yan, “Frequency-doubling optoelectronic oscillator using DSB-SC modulation and carrier recovery based on stimulated Brillouin scattering,” IEEE Photon. J. 5(2), 6600606 (2013). [CrossRef]
  20. H. Tsuchida, M. Suzuki, “40-Gb/s clock recovery using an injection-locked optoelectronic oscillator,” IEEE Photon. Technol. Lett. 17(1), 211–213 (2005). [CrossRef]
  21. S. L. Pan, J. P. Yao, “Optical clock recovery using a polarization-modulator-based frequency-doubling optoelectronic oscillator,” J. Lightwave Technol. 27(16), 3531–3539 (2009). [CrossRef]
  22. Y.-C. Chi, G.-R. Lin, “A self-started laser diode pulsation based synthesizer-free optical return-to-zero on–off-keying data generator,” IEEE Trans. Microw. Theory Tech. 58(8), 2292–2298 (2010). [CrossRef]
  23. A. Sherman, M. Horowitz, “Ultralow-repetition-rate pulses with ultralow jitter generation by passive mode-locking of an optoelectronic oscillator,” J. Opt. Soc. Am. B 30(11), 2980–2983 (2013). [CrossRef]
  24. X. Liu, W. Pan, X. Zou, L. Yan, B. Luo, B. Lu, “Investigation on tunable modulation index in the polarization-modulator-based optoelectronic oscillator,” IEEE J. Quantum Electron. 50(2), 68–73 (2014). [CrossRef]
  25. W. Li, W. T. Wang, W. H. Sun, L. X. Wang, J. G. Liu, N. H. Zhu, “Generation of flat optical frequency comb using a single polarization modulator and a Brillouin-assisted power equalizer,” IEEE Photon. J. 6(2), 790908 (2014). [CrossRef]
  26. V. J. Urick, P. S. Devgan, J. D. McKinney, F. Bucholtz, K. J. Williams, “Channelisation of radio-frequency signals using optoelectronic oscillator,” Electron. Lett. 45(24), 1242–1243 (2009). [CrossRef]
  27. X. Zou, W. Li, W. Pan, L. Yan, J. Yao, “Photonic-assisted microwave channelizer with improved channel characteristics based on spectrum-controlled stimulated Brillouin scattering,” IEEE Trans. Microw. Theory Tech. 61(9), 3470–3478 (2013). [CrossRef]
  28. P. S. Devgan, V. J. Urick, K. J. Williams, “Detection of low-power signals using a two laser multimode optoelectronic oscillator,” IEEE Photon. Technol. Lett. 24(10), 857–859 (2012).
  29. I. Ozdur, D. Mandridis, M. U. Piracha, M. Akbulut, N. Hoghooghi, P. J. Delfyett, “Optical frequency stability measurement using an etalon-based optoelectronic oscillator,” IEEE Photon. Technol. Lett. 23(4), 263–265 (2011). [CrossRef]
  30. L. D. Nguyen, K. Nakatani, B. Journet, “Refractive index measurement by using an optoelectronic oscillator,” IEEE Photon. Technol. Lett. 22(12), 1726–1728 (2010). [CrossRef]
  31. X. Liu, W. Pan, X. Zou, B. Luo, L. Yan, B. Lu, “A reconfigurable optoelectronic oscillator based on cascaded coherence-controllable recirculating delay lines,” Opt. Express 20(12), 13296–13301 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited