OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 9 — May. 5, 2014
  • pp: 11140–11151

Vectorial point spread function and optical transfer function in oblique plane imaging

Jeongmin Kim, Tongcang Li, Yuan Wang, and Xiang Zhang  »View Author Affiliations

Optics Express, Vol. 22, Issue 9, pp. 11140-11151 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1291 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Oblique plane imaging, using remote focusing with a tilted mirror, enables direct two-dimensional (2D) imaging of any inclined plane of interest in three-dimensional (3D) specimens. It can image real-time dynamics of a living sample that changes rapidly or evolves its structure along arbitrary orientations. It also allows direct observations of any tilted target plane in an object of which orientational information is inaccessible during sample preparation. In this work, we study the optical resolution of this innovative wide-field imaging method. Using the vectorial diffraction theory, we formulate the vectorial point spread function (PSF) of direct oblique plane imaging. The anisotropic lateral resolving power caused by light clipping from the tilted mirror is theoretically analyzed for all oblique angles. We show that the 2D PSF in oblique plane imaging is conceptually different from the inclined 2D slice of the 3D PSF in conventional lateral imaging. Vectorial optical transfer function (OTF) of oblique plane imaging is also calculated by the fast Fourier transform (FFT) method to study effects of oblique angles on frequency responses.

© 2014 Optical Society of America

OCIS Codes
(110.0110) Imaging systems : Imaging systems
(110.4850) Imaging systems : Optical transfer functions
(180.0180) Microscopy : Microscopy
(260.1960) Physical optics : Diffraction theory

ToC Category:
Imaging Systems

Original Manuscript: February 25, 2014
Revised Manuscript: April 8, 2014
Manuscript Accepted: April 8, 2014
Published: May 1, 2014

Virtual Issues
Vol. 9, Iss. 7 Virtual Journal for Biomedical Optics

Jeongmin Kim, Tongcang Li, Yuan Wang, and Xiang Zhang, "Vectorial point spread function and optical transfer function in oblique plane imaging," Opt. Express 22, 11140-11151 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Anselmi, C. Ventalon, A. Bègue, D. Ogden, V. Emiliani, “Three-dimensional imaging and photostimulation by remote-focusing and holographic light patterning,” Proc. Natl. Acad. Sci. U.S.A. 108(49), 19504–19509 (2011). [CrossRef] [PubMed]
  2. C. W. Smith, E. J. Botcherby, M. J. Booth, R. Juškaitis, T. Wilson, “Agitation-free multiphoton microscopy of oblique planes,” Opt. Lett. 36(5), 663–665 (2011). [CrossRef] [PubMed]
  3. C. W. Smith, E. J. Botcherby, T. Wilson, “Resolution of oblique-plane images in sectioning microscopy,” Opt. Express 19(3), 2662–2669 (2011). [CrossRef] [PubMed]
  4. W. Göbel, F. Helmchen, “New angles on neuronal dendrites in vivo,” J. Neurophysiol. 98(6), 3770–3779 (2007). [CrossRef] [PubMed]
  5. C. Dunsby, “Optically sectioned imaging by oblique plane microscopy,” Opt. Express 16(25), 20306–20316 (2008). [CrossRef] [PubMed]
  6. S. Kumar, D. Wilding, M. B. Sikkel, A. R. Lyon, K. T. MacLeod, C. Dunsby, “High-speed 2D and 3D fluorescence microscopy of cardiac myocytes,” Opt. Express 19(15), 13839–13847 (2011). [CrossRef] [PubMed]
  7. F. Cutrale, E. Gratton, “Inclined selective plane illumination microscopy adaptor for conventional microscopes,” Microsc. Res. Tech. 75(11), 1461–1466 (2012). [CrossRef] [PubMed]
  8. E. J. Botcherby, R. Juskaitis, M. J. Booth, T. Wilson, “Aberration-free optical refocusing in high numerical aperture microscopy,” Opt. Lett. 32(14), 2007–2009 (2007). [CrossRef] [PubMed]
  9. E. J. Botcherby, R. Juskaitis, M. J. Booth, T. Wilson, “An optical technique for remote focusing in microscopy,” Opt. Commun. 281(4), 880–887 (2008). [CrossRef]
  10. C. J. R. Sheppard, H. J. Matthews, “Imaging in high-aperture optical systems,” J. Opt. Soc. Am. A 4(8), 1354–1360 (1987). [CrossRef]
  11. M. Gu, Advanced Optical Imaging Theory (Springer, 2000).
  12. B. Richards, E. Wolf, “Electromagnetic Diffraction in Optical Systems. II. Structure of the Image Field in an Aplanatic System,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959). [CrossRef]
  13. J. D. Jackson, Classical Electrodynamics (Wiley, 1999).
  14. J. A. Stratton, L. J. Chu, “Diffraction Theory of Electromagnetic Waves,” Phys. Rev. 56(1), 99–107 (1939). [CrossRef]
  15. J. J. Stamnes, Waves in Focal Regions: Propagation, Diffraction, and Focusing of Light, Sound, and Water Waves (Adam Hilger, 1986).
  16. T. D. Visser, S. H. Wiersma, “Spherical aberration and the electromagnetic field in high-aperture systems,” J. Opt. Soc. Am. A 8(9), 1404–1410 (1991). [CrossRef]
  17. C. J. R. Sheppard, A. Choudhury, J. Gannaway, “Electromagnetic field near focus of wide-angular lens and mirror systems,” IEEE J. Microwave Opt. Acoust. 1(4), 129–132 (1977). [CrossRef]
  18. E. Wolf, Y. Li, “Conditions for the validity of the Debye integral representation of focused fields,” Opt. Commun. 39(4), 205–210 (1981). [CrossRef]
  19. Y. J. Li, “Focal shifts in diffracted converging electromagnetic waves. I. Kirchhoff theory,” J. Opt. Soc. Am. A 22(1), 68–76 (2005). [CrossRef] [PubMed]
  20. Y. J. Li, “Focal shifts in diffracted converging electromagnetic waves. II. Rayleigh theory,” J. Opt. Soc. Am. A 22(1), 77–83 (2005). [CrossRef] [PubMed]
  21. E. Wolf, “Electromagnetic diffraction in optical systems. I. An integral representation of the image field,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 349–357 (1959). [CrossRef]
  22. C. J. R. Sheppard, M. Gu, Y. Kawata, S. Kawata, “Three-dimensional transfer functions for high-aperture systems,” J. Opt. Soc. Am. A 11(2), 593–598 (1994). [CrossRef]
  23. B. Frieden, “Optical Transfer of the Three-Dimensional Object,” J. Opt. Soc. Am. 57(1), 56–65 (1967). [CrossRef]
  24. C. J. R. Sheppard, K. G. Larkin, “Vectorial pupil functions and vectorial transfer functions,” Optik (Stuttg.) 107, 79–87 (1997).
  25. M. R. Arnison, C. J. R. Sheppard, “A 3D vectorial optical transfer function suitable for arbitrary pupil functions,” Opt. Commun. 211(1-6), 53–63 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited