OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 9 — May. 5, 2014
  • pp: 11152–11166

Speckle reduction in laser projection using a dynamic deformable mirror

Thi-Kim-Trinh Tran, Xuyuan Chen, Øyvind Svensen, and Muhammad Nadeem Akram  »View Author Affiliations

Optics Express, Vol. 22, Issue 9, pp. 11152-11166 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2291 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Despite of much effort and significant progress in recent years, speckle removal is still a challenge for laser projection technology. In this paper, speckle reduction by dynamic deformable mirror was investigated. Time varying independent speckle patterns were generated due to the angle diversity introduced by the dynamic mirror, and these speckle patterns were averaged out by the camera or human eyes, thus reducing speckle contrast in the final image. The speckle reduction by the wavelength diversity of the lasers was also studied. Both broadband lasers and narrowband laser were used for experiment. It is experimentally shown that speckle suppression can be attained by the widening of the spectrum of the lasers. Lower speckle contrast reduction was attained by the wavelength diversity for narrowband laser compared to the broadband lasers. This method of speckle reduction is suitable in laser projectors for wide screen applications where high power laser illumination is needed.

© 2014 Optical Society of America

OCIS Codes
(030.6140) Coherence and statistical optics : Speckle
(110.6150) Imaging systems : Speckle imaging
(140.7300) Lasers and laser optics : Visible lasers

ToC Category:
Optical Devices

Original Manuscript: February 27, 2014
Revised Manuscript: April 15, 2014
Manuscript Accepted: April 17, 2014
Published: May 1, 2014

Thi-Kim-Trinh Tran, Xuyuan Chen, Øyvind Svensen, and Muhammad Nadeem Akram, "Speckle reduction in laser projection using a dynamic deformable mirror," Opt. Express 22, 11152-11166 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Redding, G. Allen, E. R. Dufresne, H. Cao, “Low-loss high-speed speckle reduction using a colloidal dispersion,” Appl. Opt. 52(6), 1168–1172 (2013). [CrossRef] [PubMed]
  2. F. P. Shevlin, “Speckle reduction in laser-illuminated picoprojectors,” Proc. SPIE 8252, 825206 (2012). [CrossRef]
  3. D. C. Ong, S. Solanki, X. Liang, X. Xu, “Analysis of laser speckle severity, granularity, and anisotropy using the power spectral density in polar-coordinate representation,” Opt. Eng. 51(5), 054301 (2012). [CrossRef]
  4. C.-Y. Chen, W.-C. Su, C.-H. Lin, M.-D. Ke, Q.-L. Deng, K.-Y. Chiu, “Reduction of speckles and distortion in projection system by using a rotating diffuser,” Opt. Rev. 19(6), 440–443 (2012). [CrossRef]
  5. J. G. Manni, J. W. Goodman, “Versatile method for achieving 1% speckle contrast in large-venue laser projection displays using a stationary multimode optical fiber,” Opt. Express 20(10), 11288–11315 (2012). [CrossRef] [PubMed]
  6. D. S. Mehta, D. N. Naik, R. K. Singh, M. Takeda, “Laser speckle reduction by multimode optical fiber bundle with combined temporal, spatial, and angular diversity,” Appl. Opt. 51(12), 1894–1904 (2012). [CrossRef] [PubMed]
  7. B. Redding, M. A. Choma, H. Cao, “Spatial coherence of random laser emission,” Opt. Lett. 36(17), 3404–3406 (2011). [CrossRef] [PubMed]
  8. B. Redding, M. A. Choma, H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6(6), 355–359 (2012). [CrossRef] [PubMed]
  9. A. Furukawa, N. Ohse, Y. Sato, D. Imanishi, K. Wakabayashi, S. Ito, K. Tamamura, and S. Hirata, “Effective speckle reduction in laser projection displays,” SPIE Proceedings 6911, 69110T (2008).
  10. F. Qi, V. Tavakol, I. Ocket, S. Islam, D. Schreurs, B. Nauwelaers, I. Jager, J. Stiens, “Hadamard speckle contrast reduction for imaging system: Comprehension and evaluation,” in Radar Conference, 2009. EuRAD 2009. European (2009), pp. 401–404.
  11. J. I. Trisnadi, “Hadamard speckle contrast reduction,” Opt. Lett. 29(1), 11–13 (2004). [CrossRef] [PubMed]
  12. M. N. Akram, V. Kartashov, Z. Tong, “Speckle reduction in line-scan laser projectors using binary phase codes,” Opt. Lett. 35(3), 444–446 (2010). [CrossRef] [PubMed]
  13. S. An, A. Lapchuk, V. Yurlov, J. Song, H. Park, J. Jang, W. Shin, S. Karpoltsev, S. K. Yun, “Speckle suppression in laser display using several partially coherent beams,” Opt. Express 17(1), 92–103 (2009). [CrossRef] [PubMed]
  14. V. Yurlov, A. Lapchuk, S. Yun, J. Song, H. Yang, “Speckle suppression in scanning laser display,” Appl. Opt. 47(2), 179–187 (2008). [CrossRef] [PubMed]
  15. A. Lapchuk, A. Kryuchyn, V. Petrov, V. Yurlov, V. Klymenko, “Full speckle suppression in laser projectors using two Barker code-type diffractive optical elements,” J. Opt. Soc. Am. A 30(1), 22–31 (2013). [CrossRef] [PubMed]
  16. A. Lapchuk, A. Kryuchyn, V. Petrov, V. Klymenko, “Optimal speckle suppression in laser projectors using a single two-dimensional Barker code diffractive optical element,” J. Opt. Soc. Am. A 30(2), 227–232 (2013). [CrossRef] [PubMed]
  17. Y. Wang, P. Meng, D. Wang, L. Rong, S. Panezai, “Speckle noise suppression in digital holography by angular diversity with phase-only spatial light modulator,” Opt. Express 21(17), 19568–19578 (2013). [CrossRef] [PubMed]
  18. M. N. Akram, Z. Tong, G. Ouyang, X. Chen, V. Kartashov, “Laser speckle reduction due to spatial and angular diversity introduced by fast scanning micromirror,” Appl. Opt. 49(17), 3297–3304 (2010). [CrossRef] [PubMed]
  19. I. Peled, M. Zenou, B. Greenberg, and Z. Kotler, “MEMS Based Speckle Reduction Obtained by Angle Diversity for Fast Imaging,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference (2009), p. JTuD44. [CrossRef]
  20. T.-K.-T. Tran, S. Subramaniam, C.-P. Le, S. Kaur, S. Kalicinski, M. Ekwinska, E. Halvorsen, M. N. Akram, “Design, Modeling, and Characterization of a Microelectromechanical Diffuser Device for Laser Speckle Reduction,” J. Microelectromech. Syst. 23(1), 117–127 (2014). [CrossRef]
  21. N. E. Yu, J. W. Choi, H. Kang, D.-K. Ko, S.-H. Fu, J.-W. Liou, A. H. Kung, H. J. Choi, B. J. Kim, M. Cha, L.-H. Peng, “Speckle noise reduction on a laser projection display via a broadband green light source,” Opt. Express 22(3), 3547–3556 (2014). [CrossRef] [PubMed]
  22. B. Beck, I. Lee, “PHOTONICS APPLIED: DISPLAYS: High-power RGB laser engine powers digital projection displays,” http://www.laserfocusworld.com/articles/print/volume-48/issue-11/features/high-power-rgb-laser-engine-powers-digital-projection-displays.html .
  23. F. Shevlin, “Speckle Reduction With Multiple Laser Pulses,” in 2nd Laser Disp. Conf. LDC’13, Yokohama Jpn. Apr 23 - Apr 24 (2013).
  24. F. Shevlin, “Specification of Anti-Speckle Technology Evaluation System,” Dynamic Optics Applications Dyoptyka
  25. J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts and Company, 2007).
  26. S. Roelandt, Y. Meuret, G. Craggs, G. Verschaffelt, P. Janssens, and H. Thienpont, “Evaluation of an extensive speckle measurement method,” in SPIE Photonics Europe (2012), 843603.
  27. S. J. Kirkpatrick, D. D. Duncan, E. M. Wells-Gray, “Detrimental effects of speckle-pixel size matching in laser speckle contrast imaging,” Opt. Lett. 33(24), 2886–2888 (2008). [CrossRef] [PubMed]
  28. B. Choi, N. M. Kang, J. S. Nelson, “Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model,” Microvasc. Res. 68(2), 143–146 (2004). [CrossRef] [PubMed]
  29. O. Thompson, M. Andrews, E. Hirst, “Correction for spatial averaging in laser speckle contrast analysis,” Biomed. Opt. Express 2(4), 1021–1029 (2011). [CrossRef] [PubMed]
  30. J. I. Trisnadi, “Speckle contrast reduction in laser projection displays,” in Electronic Imaging 2002 (2002), pp. 131–137.
  31. Z. Tong, X. Chen, M. N. Akram, A. Aksnes, “Compound speckle characterization method and reduction by optical design,” J. Disp. Technol. 8(3), 132–137 (2012). [CrossRef]
  32. L. Büttner, J. Czarske, “Investigation of the influence of spatial coherence of a broad-area laser diode on the interference fringe system of a Mach-Zehnder interferometer for highly spatially resolved velocity measurements,” Appl. Opt. 44(9), 1582–1590 (2005). [CrossRef] [PubMed]
  33. H. Braun, S. Rogowsky, U. T. Schwarz, S. Bruninghoff, A. Lell, S. Lutgen, U. Strauss, “Supermodes in broad ridge (Al,In)GaN laser diodes,” IEEE J. Quantum Electron. 45(9), 1074–1083 (2009). [CrossRef]
  34. F. Riechert, G. Verschaffelt, M. Peeters, G. Bastian, U. Lemmer, I. Fischer, “Speckle characteristics of a broad-area VCSEL in the incoherent emission regime,” Opt. Commun. 281(17), 4424–4431 (2008). [CrossRef]
  35. N. Y. Gordeev, I. I. Novikov, A. V. Chunareva, N. D. Il’inskaya, Y. M. Shernyakov, M. V. Maximov, A. S. Payusov, N. A. Kalyuzhnyy, S. A. Mintairov, V. M. Lantratov, V. A. Shchukin, N. N. Ledentsov, “Edge-emitting InGaAs/GaAs laser with high temperature stability of wavelength and threshold current,” Semicond. Sci. Technol. 25(4), 045003 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited