OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 9 — May. 5, 2014
  • pp: 11215–11227

Three-dimensional structured illumination microscopy using Lukosz bound apodization reduces pixel negativity at no resolution cost

Christiaan H. Righolt, Sabine Mai, Lucas J. van Vliet, and Sjoerd Stallinga  »View Author Affiliations

Optics Express, Vol. 22, Issue 9, pp. 11215-11227 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2849 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The quality of the reconstructed image in structured illumination microscopy (SIM) depends on various aspects of the image filtering process. To optimize the trade-off between resolution and ringing artifacts, which lead to negative intensities, we extend Lukosz-bound filtering to 3D SIM and derive the parametrization of the 3D SIM cut-off. We compare the use of the Lukosz-bound as apodization filter to triangular apodization and find a tenfold reduction in the most negative pixel value with a minimal resolution loss. We test this algorithm on experimental SIM images of tubulin filaments and DAPI stained DNA structure in cancer cells and find a substantial reduction in the most negative pixel value and the percentage of pixels with a negative value. This means that there is no longer a need to clip the final image to avoid these negative pixel values.

© 2014 Optical Society of America

OCIS Codes
(100.1830) Image processing : Deconvolution
(100.6640) Image processing : Superresolution
(110.4280) Imaging systems : Noise in imaging systems
(180.2520) Microscopy : Fluorescence microscopy
(070.2615) Fourier optics and signal processing : Frequency filtering

ToC Category:

Original Manuscript: January 24, 2014
Revised Manuscript: March 20, 2014
Manuscript Accepted: March 23, 2014
Published: May 1, 2014

Virtual Issues
Vol. 9, Iss. 7 Virtual Journal for Biomedical Optics

Christiaan H. Righolt, Sabine Mai, Lucas J. van Vliet, and Sjoerd Stallinga, "Three-dimensional structured illumination microscopy using Lukosz bound apodization reduces pixel negativity at no resolution cost," Opt. Express 22, 11215-11227 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Lukosz, “Optical systems with resolving powers exceeding the classical limit,” J. Opt. Soc. Am. 56, 1463–1471 (1966). [CrossRef]
  2. M. A. A. Neil, R. Juskaitis, T. Wilson, “Method of obtaining optical sectioning by using structured light in a conventional microscope,” Opt. Lett. 22, 1905–1907 (1997). [CrossRef]
  3. R. Heintzmann, C. G. Cremer, “Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating,” Proc. SPIE 3568, 185–196 (1999). [CrossRef]
  4. G. E. Cragg, P. T. So, “Lateral resolution enhancement with standing evanescent waves,” Opt. Lett. 25, 46–48 (2000). [CrossRef]
  5. M. A. A. Neil, A. Squire, R. Juskaitis, P. I. H. Bastiaens, T. Wilson, “Wide-field optically sectioning fluorescence microscopy with laser illumination,” J. Microsc. 197, 1–4 (2000). [CrossRef] [PubMed]
  6. M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82–87 (2000). [CrossRef] [PubMed]
  7. J. T. Frohn, H. F. Knapp, A. Stemmer, “True optical resolution beyond the Rayleigh limit achieved by standing wave illumination,” Proc. Natl. Acad. Sci. U. S. A. 97, 7232–7236 (2000). [CrossRef] [PubMed]
  8. R. Heintzmann, T. Jovin, C. Cremer, “Saturated patterned excitation microscopy - a concept for optical resolution improvement,” J. Opt. Soc. Am. B 19, 1599–1609 (2002). [CrossRef]
  9. M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U. S. A. 102, 13081–13086 (2005). [CrossRef] [PubMed]
  10. R. Fiolka, M. Beck, A. Stemmer, “Structured illumination in total internal reflection fluorescence microscopy using a spatial light modulator,” Opt. Lett. 33, 1629–1631 (2008). [CrossRef] [PubMed]
  11. M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94, 4957–4970 (2008). [CrossRef] [PubMed]
  12. P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, M. G. L. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6, 339–342 (2009). [CrossRef] [PubMed]
  13. L. Shao, P. Kner, E. H. Rego, M. G. L. Gustafsson, “Super-resolution 3d microscopy of live whole cells using structured illumination,” Nat. Methods 12, 1044–1046 (2011). [CrossRef]
  14. L. Wang, M. C. Pitter, M. G. Somekh, “Wide-field high-resolution structured illumination solid immersion fluorescence microscopy,” Opt. Lett. 36, 2794–2796 (2011). [CrossRef] [PubMed]
  15. O. Mandula, M. Kielhorn, K. Wicker, G. Krampert, I. Kleppe, R. Heintzmann, “Line scan - structured illumination microscopy super-resolution imaging in thick fluorescent samples,” Opt. Express 20, 24167–24174 (2012). [CrossRef] [PubMed]
  16. C. Berenstein, E. Patrick, “Exact deconvolution for multiple convolution operators–An overview, plus performance characterizations for imaging sensors,” Proc. IEEE 78, 723–734 (1990). [CrossRef]
  17. L. P. Yaroslavsky, H. J. Caulfield, “Deconvolution of multiple images of the same object,” Appl. Opt. 33, 2157–2162 (1994). [CrossRef] [PubMed]
  18. S. A. Shroff, J. R. Fienup, D. R. Williams, “Phase-shift estimation in sinusoidally illuminated images for lateral superresolution,” J. Opt. Soc. Am. A 26, 413–424 (2009). [CrossRef]
  19. C. H. Righolt, J. A. Slotman, I. T. Young, S. Mai, L. J. van Vliet, S. Stallinga, “Image filtering in structured illumination microscopy using the lukosz bound,” Opt. Express 21, 24431–24451 (2013). [CrossRef] [PubMed]
  20. W. Lukosz, “Übertragung Nicht-negativer Signale Durch Lineare Filter,” J. Mod. Opt. 9, 335–364 (1962).
  21. W. Lukosz, “Properties of linear low-pass filters for nonnegative signals,” J. Opt. Soc. Am. 52, 827–829 (1962). [CrossRef]
  22. K. Wicker, “Increasing resolution and light efficiency in fluorescence microscopy,” Ph.D. thesis, King’s College, London (2010).
  23. K. Wicker, O. Mandula, G. Best, R. Fiolka, R. Heintzmann, “Phase optimisation for structured illumination microscopy,” Opt. Express 21, 2032–2049 (2013). [CrossRef] [PubMed]
  24. K. Wicker, “Non-iterative determination of pattern phase in structured illumination microscopy using autocorrelations in Fourier space,” Opt. Express 21, 24692–24701 (2013). [CrossRef] [PubMed]
  25. C. J. R. Sheppard, M. Gu, Y. Kawata, S. Kawata, “Three-dimensional transfer functions for high-aperture systems,” J. Opt. Soc. Am. A 11, 593–598 (1994). [CrossRef]
  26. J. L. Bakx, “Efficient computation of optical disk readout by use of the chirp z transform,” Appl. Opt. 41, 4879–4903 (2002). [CrossRef]
  27. H. G. Drexler, G. Gaedicke, M. S. Lok, V. Diehl, J. Minowada, “Hodgkin’s disease derived cell lines HDLM-2 and L-428: comparison of morphology, immunological and isoenzyme profiles,” Leukemia Res. 10, 487–500 (1986). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

Supplementary Material

» Media 1: AVI (3046 KB)     
» Media 2: AVI (3170 KB)     
» Media 3: AVI (2528 KB)     
» Media 4: AVI (3687 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited