OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 9 — May. 5, 2014
  • pp: 11244–11253

Novel gas sensor combined active fiber loop ring-down and dual wavelengths differential absorption method

Yanjie Zhao, Jun Chang, Jiasheng Ni, Qingpu Wang, Tongyu Liu, Chang Wang, Pengpeng Wang, Guangping Lv, and Gangding Peng  »View Author Affiliations

Optics Express, Vol. 22, Issue 9, pp. 11244-11253 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1119 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A novel active fiber loop ring-down gas sensor combined with dual wavelengths differential absorption method is proposed. Two Distributed Feedback Laser Diodes (DFB LDs) with different wavelengths are employed. One LD whose wavelength covered with the absorption line of target gas is used for sensing. Another LD whose wavelength is centered outside the absorption line is used for reference. The gas absorption loss can be obtained by differencing the reference signal and sensing signal. Compared with traditional method of one wavelength employed, it can eliminate the influence of the cavity loss variety and photoelectric device drift in the system efficiently. An Erbium Doped Fiber Amplifier (EDFA) with Automatic Gain Control (AGC) is used to compensate the loss of the light in the ring-down cavity, which will increase the cavity round trips and improve the precision of gas detection. And two fiber Bragg gratings (FBGs) are employed to get rid of amplified spontaneous emission (ASE) spectrum noise as filters. The calibrating ethyne samples of different concentrations are measured with a 65 mm long gas cell in order to evaluate the effect of reference. The results show the relative deviation is found to be less than ± 0.4% of 0.1% ethyne when a certain additional loss from 0 to 1.2dB is introduced to the cavity and the relative deviation of measured concentration is less than ± 0.5% over 24 hours.

© 2014 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(300.1030) Spectroscopy : Absorption
(300.6340) Spectroscopy : Spectroscopy, infrared
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:

Original Manuscript: January 24, 2014
Revised Manuscript: March 28, 2014
Manuscript Accepted: April 22, 2014
Published: May 2, 2014

Yanjie Zhao, Jun Chang, Jiasheng Ni, Qingpu Wang, Tongyu Liu, Chang Wang, Pengpeng Wang, Guangping Lv, and Gangding Peng, "Novel gas sensor combined active fiber loop ring-down and dual wavelengths differential absorption method," Opt. Express 22, 11244-11253 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59(12), 2544–2551 (1988). [CrossRef]
  2. J. B. Dudek, P. B. Tarsa, A. Velasquez, M. Wladyslawski, P. Rabinowitz, K. K. Lehmann, “Trace moisture detection using continuous-wave cavity ring-down spectroscopy,” Anal. Chem. 75(17), 4599–4605 (2003). [CrossRef] [PubMed]
  3. D. B. Atkinson, “Cavity ring-down spectroscopy: techniques and applications,” J. Am. Chem. Soc. 132(13), 4972 (2010). [CrossRef]
  4. J. S. Ni, J. Chang, T. Y. Liu, Y. F. Li, Y. J. Zhao, Q. Wang, “Fiber methane gas sensor and its application in methane outburst prediction in coal mine,” J. Electron. Sci. Technol. China 6(4), 373–376 (2008).
  5. H. Waechter, J. Litman, A. H. Cheung, J. A. Barnes, H.-P. Loock, “Chemical sensing using fiber cavity ring-down spectroscopy,” Sensors (Basel) 10(3), 1716–1742 (2010). [CrossRef] [PubMed]
  6. P. Zalicki, R. N. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102(7), 2708–2717 (1995). [CrossRef]
  7. G. Berden, R. Peeters, G. Meijer, “Cavity ring-down spectroscopy: Experimental schemes and applications,” Int. Rev. Phys. Chem. 19(4), 565–607 (2000). [CrossRef]
  8. T. von Lerber, M. W. Sigrist, “Cavity-ring-down principle for fiber-optic resonators: experimental realization of bending loss and evanescent-field sensing,” Appl. Opt. 41(18), 3567–3575 (2002). [CrossRef] [PubMed]
  9. S. Pu, X. J. Gu, “Fiber loop ring-down spectroscopy with a long-period grating cavity,” Opt. Lett. 34(12), 1774–1776 (2009). [CrossRef] [PubMed]
  10. J. Y. Lee, J. W. Kim, Y. S. Yoo, J. W. Hahn, H. W. Lee, “Spatial-domain cavity ringdown from a high-finesse plane Fabry–Perot cavity,” J. Appl. Phys. 91(2), 582–594 (2002). [CrossRef]
  11. H. F. Huang, K. K. Lehmann, “Noise in cavity ring-down spectroscopy caused by transverse mode coupling,” Opt. Express 15(14), 8745–8759 (2007). [CrossRef] [PubMed]
  12. G. Totschnig, D. S. Baer, J. Wang, F. Winter, H. Hofbauer, R. K. Hanson, “Multiplexed continuous-wave diode-laser cavity ringdown measurements of multiple species,” Appl. Opt. 39(12), 2009–2016 (2000). [CrossRef] [PubMed]
  13. Y. Chen, K. K. Lehmann, J. Kessler, B. S. Lollar, G. L. Couloume, T. C. Onstott, “Measurement of the 13C/12C of atmospheric CH4 using near-infrared (NIR) cavity ring-down spectroscopy,” Anal. Chem. 85(23), 11250–11257 (2013). [CrossRef] [PubMed]
  14. M. Jiang, W. G. Zhang, Q. Zhang, Y. P. Liu, B. Liu, “Investigation on an evanescent wave fiber-optic absorption sensor based on fiber loop cavity ring-down spectroscopy,” Opt. Commun. 283(2), 249–253 (2010). [CrossRef]
  15. M. Gupta, H. Jiao, A. O’Keefe, “Cavity-enhanced spectroscopy in optical fibers,” Opt. Lett. 27(21), 1878–1880 (2002). [CrossRef] [PubMed]
  16. G. Stewart, K. Atherton, H. B. Yu, B. Culshaw, “An investigation of an optical fibre amplifier loop for intra-cavity and ring-down cavity loss measurements,” Meas. Sci. Technol. 12(7), 843–849 (2001). [CrossRef]
  17. Z. Q. Tan, X. W. Long, “A developed optical-feedback cavity ring-down spectrometer and its application,” Appl. Spectrosc. 66(5), 492–495 (2012). [CrossRef] [PubMed]
  18. K. M. Zhou, D. J. Webb, C. B. Mou, M. Farries, N. Hayes, I. Bennion, “Optical fiber cavity ring down measurement of refractive index with a microchannel drilled by femtosecond laser,” IEEE Photon. Technol. Lett. 21(22), 1653–1655 (2009). [CrossRef]
  19. Y. Zhang, M. Zhang, W. Jin, “Sensitivity enhancement in erbium-doped fiber laser intra-cavity absorption sensor,” Sensor. Actuat. A-Phys 104(2), 183–187 (2003).
  20. H. Waechter, K. Bescherer, C. J. Dürr, R. D. Oleschuk, H.-P. Loock, “405 nm absorption detection in nanoliter volumes,” Anal. Chem. 81(21), 9048–9054 (2009). [CrossRef] [PubMed]
  21. G. Stewart, K. Atherton, B. Culshaw, “Cavity-enhanced spectroscopy in fiber cavities,” Opt. Lett. 29(5), 442–444 (2004). [CrossRef] [PubMed]
  22. N. Ni, C. C. Chan, T. K. Chuah, L. Xia, P. Shum, “Enhancing the measurement accuracy of a cavity-enhanced fiber chemical sensor by an adaptive filter,” Meas. Sci. Technol. 19(11), 115203 (2008). [CrossRef]
  23. K. L. Yu, C. Q. Wu, Z. Wang, “Optical methane sensor based on a fiber loop at 1665 nm,” IEEE Sens. J. 10(3), 728–731 (2010). [CrossRef]
  24. T. Brauers, M. Hausmann, U. Brandenburger, H. P. Dorn, “Improvement of differential optical absorption spectroscopy with a multichannel scanning technique,” Appl. Opt. 34(21), 4472–4479 (1995). [CrossRef] [PubMed]
  25. A. Merten, J. Tschritter, U. Platt, “Design of differential optical absorption spectroscopy long-path telescopes based on fiber optics,” Appl. Opt. 50(5), 738–754 (2011). [CrossRef] [PubMed]
  26. S. Kameyama, M. Imaki, Y. Hirano, S. Ueno, S. Kawakami, D. Sakaizawa, M. Nakajima, “Development of 1.6 μm continuous-wave modulation hard-target differential absorption lidar system for CO2 sensing,” Opt. Lett. 34(10), 1513–1515 (2009). [CrossRef] [PubMed]
  27. J. R. Chen, K. Numata, S. T. Wu, “Error reduction methods for integrated-path differential-absorption lidar measurements,” Opt. Express 20(14), 15589–15609 (2012). [CrossRef] [PubMed]
  28. R. E. Warren, R. G. Vanderbeek, “Online estimation of vapor path-integrated concentration and absorptivity using multiwavelength differential absorption lidar,” Appl. Opt. 46(31), 7579–7586 (2007). [CrossRef] [PubMed]
  29. B. Kaldvee, C. Brackmann, M. Aldén, J. Bood, “Highly range-resolved ammonia detection using near-field picosecond differential absorption lidar,” Opt. Express 20(18), 20688–20697 (2012). [CrossRef] [PubMed]
  30. G. Stewart, K. T. V. Grattan, and B. T. Meggitt, in Optical Fiber Sensor Technology, Kluwer (Academic, 1998).
  31. Y. Zhao, Y. Li, T. Zhang, C. Wang, T. Liu, “Effect of temperature on methane gas concentration by tunable diode laser absorption spectroscopy,” Proc. SPIE 8421, 8421AP (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited