OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 9 — May. 5, 2014
  • pp: 11301–11311

Self-formed cavity quantum electrodynamics in coupled dipole cylindrical-waveguide systems

S. Afshar V, M. R. Henderson, A. D. Greentree, B. C. Gibson, and T. M. Monro  »View Author Affiliations

Optics Express, Vol. 22, Issue 9, pp. 11301-11311 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1702 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An ideal optical cavity operates by confining light in all three dimensions. We show that a cylindrical waveguide can provide the longitudinal confinement required to form a two dimensional cavity, described here as a self-formed cavity, by locating a dipole, directed along the waveguide, on the interface of the waveguide. The cavity resonance modes lead to peaks in the radiation of the dipole-waveguide system that have no contribution due to the skew rays that exist in longitudinally invariant waveguides and reduce their Q-factor. Using a theoretical model, we evaluate the Q-factor and modal volume of the cavity formed by a dipole-cylindrical-waveguide system and show that such a cavity allows access to both the strong and weak coupling regimes of cavity quantum electrodynamics.

© 2014 Optical Society of America

OCIS Codes
(230.5750) Optical devices : Resonators
(270.5580) Quantum optics : Quantum electrodynamics
(140.3948) Lasers and laser optics : Microcavity devices

ToC Category:
Quantum Optics

Original Manuscript: February 26, 2014
Revised Manuscript: April 17, 2014
Manuscript Accepted: April 25, 2014
Published: May 2, 2014

S. Afshar V, M. R. Henderson, A. D. Greentree, B. C. Gibson, and T. M. Monro, "Self-formed cavity quantum electrodynamics in coupled dipole cylindrical-waveguide systems," Opt. Express 22, 11301-11311 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. M. Purcell, “Proceedings of the American Physical Society,” Phys. Rev. 69, 674 (1946). [CrossRef]
  2. P. Berman, Cavity Quantum Electrodynamics (Academic, 1994).
  3. K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003). [CrossRef] [PubMed]
  4. D. Vernooy, A. Furusawa, N. Georgiades, V. Ilchenko, H. Kimble, “Cavity QED with high-Q whispering gallery modes,” Phys. Rev. A 57, R2293–R2296 (1998). [CrossRef]
  5. H. Schniepp, V. Sandoghdar, “Spontaneous emission of europium ions embedded in dielectric nanospheres,” Phys. Rev. Lett. 89, 257403 (2002). [CrossRef] [PubMed]
  6. S. Spillane, T. Kippenberg, O. Painter, K. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003). [CrossRef] [PubMed]
  7. D. K. Armani, T. J. Kippenberg, S. M. Spillane, K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003). [CrossRef] [PubMed]
  8. T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006). [CrossRef] [PubMed]
  9. A. Kiraz, P. Michler, C. Becher, B. Gayral, A. Imamoglu, L. Zhang, E. Hu, W. V. Schoenfeld, P. M. Petroff, “Cavity-quantum electrodynamics using a single InAs quantum dot in a microdisk structure,” Appl. Phys. Lett. 78, 3932–3934 (2001). [CrossRef]
  10. W. Lukosz, R. E. Kunz, “Light emission by magnetic and electric dipoles close to a plane interface. I. total radiated power,” J. Opt. Soc. Am. 67, 1607–1615 (1977). [CrossRef]
  11. W. Lukosz, R. E. Kunz, “Light emission by magnetic and electric dipoles close to a plane dielectric interface. II. radiation patterns of perpendicular oriented dipoles,” J. Opt. Soc. Am. 67, 1615–1619 (1977). [CrossRef]
  12. W. Lukosz, “Light emission by magnetic and electric dipoles close to a plane dielectric interface. III. radiation patterns of dipoles with arbitrary orientation,” J. Opt. Soc. Am. 69, 1495–1503 (1979). [CrossRef]
  13. M. Janowicz, W. Żakowicz, “Quantum radiation of a harmonic oscillator near the planar dielectric-vacuum interface,” Phys. Rev. A 50, 4350–4364 (1994). [CrossRef] [PubMed]
  14. W. Żakowicz, M. Janowicz, “Spontaneous emission in the presence of a dielectric cylinder,” Phys. Rev. A 62, 013820 (2000). [CrossRef]
  15. J. F. Owen, P. W. Barber, P. B. Dorain, R. K. Chang, “Enhancement of fluorescence induced by microstructure resonances of a dielectric fiber,” Phys. Rev. Lett. 47, 1075–1078 (1981). [CrossRef]
  16. D. Y. Chu, S.-T. Ho, “Spontaneous emission from excitons in cylindrical dielectric waveguides and the spontaneous-emission factor of microcavity ring lasers,” J. Opt. Soc. Am. B 10, 381–390 (1993). [CrossRef]
  17. V. V. Klimov, M. Ducloy, “Spontaneous emission rate of an excited atom placed near a nanofiber,” Phys. Rev. A 69, 013812 (2004). [CrossRef]
  18. D. P. Fussell, R. C. McPhedran, C. Martijn de Sterke, “Decay rate and level shift in a circular dielectric waveguide,” Phys. Rev. A 71, 013815 (2005). [CrossRef]
  19. D. J. Heinzen, M. S. Feld, “Vacuum radiative level shift and spontaneous-emission linewidth of an atom in an optical resonator,” Phys. Rev. Lett. 59, 2623–2626 (1987). [CrossRef] [PubMed]
  20. G. Björk, S. Machida, Y. Yamamoto, K. Igeta, “Modification of spontaneous emission rate in planar dielectric microcavity structures,” Phys. Rev. A 44, 669–681 (1991). [CrossRef] [PubMed]
  21. K. Ujihara, “Spontaneous emission and concept of effective area in a very short optical cavity with plane-parallel dielectric mirrors,” Jpn. J. Appl. Phys. 30, 901–903 (1991). [CrossRef]
  22. F. Björk, H. Heitmann, Y. Yamamoto, “Spontaneous-emission coupling factor and mode characteristics of planar dielectric microcavity lasers,” Phys. Rev. A 47, 4451–4463 (1993). [CrossRef] [PubMed]
  23. F. Le Kien, S. Dutta Gupta, V. I. Balykin, K. Hakuta, “Spontaneous emission of a Cesium atom near a nanofiber: Efficient coupling of light to guided modes,” Phys. Rev. A 72, 032509 (2005). [CrossRef]
  24. F. Le Kien, K. Hakuta, “Cavity-enhanced channeling of emission from an atom into a nanofiber,” Phys. Rev. A 80, 053826 (2009). [CrossRef]
  25. K. P. Nayak, F. L. Kien, Y. Kawai, K. Hakuta, K. Nakajima, H. T. Miyazaki, Y. Sugimoto, “Cavity formation on an optical nanofiber using focused ion beam milling technique,” Opt. Express 19, 14040–14050 (2011). [CrossRef] [PubMed]
  26. M. R. Henderson, S. Afshar. V., A. D. Greentree, T. M. Monro, “Dipole emitters in fiber: interface effects, collection efficiency and optimization,” Opt. Express 19, 16182–16194 (2011). [CrossRef] [PubMed]
  27. M. R. Henderson, B. C. Gibson, H. Ebendorff-Heidepriem, K. Kuan, S. Afshar V., J. O. Orwa, I. Aharonovich, S. Tomljenovic-Hanic, A. D. Greentree, S. Prawer, T. M. Monro, “Diamond in tellurite glass: a new medium for quantum information,” Adv. Mater. 23, 2806–2810 (2011). [CrossRef] [PubMed]
  28. T. Schröder, M. Fujiwara, T. Noda, H. Q. Zhao, O. Benson, S. Takeuchi, “A nanodiamond-tapered fiber system with high single-mode coupling efficiency,” Opt. Express 20, 10490–10497 (2012). [CrossRef] [PubMed]
  29. R. Yalla, F. Le Kien, M. Morinaga, K. Hakuta, “Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett. 109, 063602 (2012). [CrossRef] [PubMed]
  30. E. Peter, I. Sagnes, G. Guirleo, S. Varoutsis, J. Bloch, A. Lematre, P. Senellart, “High-Q whispering-gallery modes in GaAs/AlOx microdisks,” Appl. Phys. Lett. 86, 021103 (2005). [CrossRef]
  31. K. Srinivasan, M. Borselli, O. Painter, A. Stintz, S. Krishna, “Cavity Q, mode volume, and lasing threshold in small diameter AlGaAs microdisks with embedded quantum dots,” Opt. Express 14, 1094–1105 (2006). [CrossRef] [PubMed]
  32. V. Bordo, “Purcell factor for a cylindrical nanocavity: ab initio analytical approach,” J. Opt. Soc. Am. B 29, 1799–1809 (2012). [CrossRef]
  33. M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, Y. Yamamoto, “Efficient source of single photons: A single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002). [CrossRef] [PubMed]
  34. S. Reitzenstein, A. Forchel, “Quantum dot micropillars,” J. Phys. D Appl. Phys. 43, 033001 (2010). [CrossRef]
  35. C. Junge, S. Nickel, D. O’Shea, A. Rauschenbeutel, “Bottle microresonator with actively stabilized evanescent coupling,” Opt. Lett. 36, 3488–3490 (2011). [CrossRef] [PubMed]
  36. A. Snyder, J. Love, Optical Waveguide Theory (Springer, 1983).
  37. L. Prkna, J. Čtyroký, M. Hubálek, “Ring microresonator as a photonic structure with complex eigenfrequency,” Opt. Quantum Electron. 36, 259–269 (2004). [CrossRef]
  38. K. R. Hiremath, M. Hammer, R. Stoffer, L. Prkna, J. Ctyroky, “Analytic approach to dielectric optical bent slab waveguides,” Opt. Quantum Electron. 37, 37–61 (2004). [CrossRef]
  39. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010). [CrossRef]
  40. K. J. Rowland, S. Afshar. V, T. M. Monro, “Bandgaps and antiresonance integrated-arrows and Bragg fibers; a simple model,” Opt. Express 16, 17935–17951 (2008). [CrossRef] [PubMed]
  41. F. Vollmer, S. Arnold, “Whispering-gallery-mode biosensing: label free detection down to single molecules,” Nat. Methods 5, 591–596 (2008). [CrossRef] [PubMed]
  42. I. M. White, H. Oveys, X. Fan, “Liquid-core optical ring-resonator sensors,” Opt. Lett. 31, 1319–1321 (2008). [CrossRef]
  43. I. M. White, H. Oveys, X. Fan, T. L. Smith, J. Zhang, “Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides,” App. Phys. Lett. 89, 191106 (2006). [CrossRef]
  44. X. Fan, I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photon. 5, 591–597 (2011). [CrossRef]
  45. C. P. K. Manchee, V. Zamora, J. W. Silverstone, J. G. C. Veinot, A. Meldrum, “Refractometric sensing with fluorescent-core microcapillaries,” Opt. Express 19, 21540–21551 (2011). [CrossRef] [PubMed]
  46. K. J. Rowland, A. Francois, P. Hoffmann, T. M. Monro, “Fluorescent polymer coated capillaries as optofluidic refractometric sensors,” Opt. Express 21, 11492–11505 (2013). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited