OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 9 — May. 5, 2014
  • pp: 11312–11324

Heat accumulation during pulsed laser materials processing

Rudolf Weber, Thomas Graf, Peter Berger, Volkher Onuseit, Margit Wiedenmann, Christian Freitag, and Anne Feuer  »View Author Affiliations

Optics Express, Vol. 22, Issue 9, pp. 11312-11324 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1410 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Laser materials processing with ultra-short pulses allows very precise and high quality results with a minimum extent of the thermally affected zone. However, with increasing average laser power and repetition rates the so-called heat accumulation effect becomes a considerable issue. The following discussion presents a comprehensive analytical treatment of multi-pulse processing and reveals the basic mechanisms of heat accumulation and its consequence for the resulting processing quality. The theoretical findings can explain the experimental results achieved when drilling microholes in CrNi-steel and for cutting of CFRP. As a consequence of the presented considerations, an estimate for the maximum applicable average power for ultra-shorts pulsed laser materials processing for a given pulse repetition rate is derived.

© 2014 Optical Society of America

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(140.6810) Lasers and laser optics : Thermal effects

ToC Category:
Laser Microfabrication

Original Manuscript: February 24, 2014
Revised Manuscript: March 29, 2014
Manuscript Accepted: March 31, 2014
Published: May 2, 2014

Rudolf Weber, Thomas Graf, Peter Berger, Volkher Onuseit, Margit Wiedenmann, Christian Freitag, and Anne Feuer, "Heat accumulation during pulsed laser materials processing," Opt. Express 22, 11312-11324 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J.-P. Negel, A. Voss, M. Abdou Ahmed, D. Bauer, D. Sutter, A. Killi, T. Graf, “1.1 kW average output power from a thin-disk multipass amplifier for ultrashort laser pulses,” Opt. Lett. 38(24), 5442–5445 (2013). [CrossRef] [PubMed]
  2. H. Hügel, H. Schittenhelm, K. Jasper, G. Callies, P. Berger, “Structuring with excimer lasers - experimental and theoretical investigations on quality and efficiency,” J. Laser Appl. 10(6), 255–264 (1998). [CrossRef]
  3. W. Schulz, U. Eppelt, R. Poprawe, “Review on laser drilling I. Fundamentals, modeling, and simulation,” J. Laser Appl. 25(1), 012006 (2013). [CrossRef]
  4. S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B. N. Chichkov, B. Wellegehausen, H. Welling, “Ablation of metals by ultrashort laser pulses,” J. Opt. Soc. Am. B 14(10), 2716–2722 (1997). [CrossRef]
  5. D. Hellrung, A. Gillner, R. Poprawe, “Laser beam removal of micro-structures with Nd: YAG lasers,” Proc. Lasers Mater. Processing Laser 97, 267–273 (1997).
  6. T. V. Kononenko, V. I. Konov, S. V. Garnov, R. Danielius, A. Piskarskas, G. Tamosauskas, F. Dausinger, “Comparative study of the ablation of materials by femtosecond and pico- or nanosecond laser pulses,” Quantum Electron. 29(8), 724–728 (1999). [CrossRef]
  7. R. Weber, A. Michalowski, M. Abdou-Ahmed, V. Onuseit, V. Rominger, M. Kraus, T. Graf, “Effects of radial and tangential polarization in laser material processing,” Phys. Procedia 12, 21–30 (2011). [CrossRef]
  8. R. Weber, M. Hafner, A. Michalowksi, T. Graf, “Minimum damage in CFRP laser processing,” Phys. Procedia 12(2), 302–307 (2011). [CrossRef]
  9. B. Neuenschwander, B. Jaeggi, M. Schmid, U. Hunziker, B. Luescher, and C. Nocera, “Processing of industrially relevant non-metals with laser pulses in the range between 10ps and 50ps,” in Proceedings of the International Congress on Applications of Lasers & Electro-Optics (ICALEO), Paper M (Vol. 103) (2011).
  10. M. Kraus, C. Markmann, A. Michalowski, R. Weber, and T. Graf, “Gas-assisted microdrilling in steel with ultrashort pulsed laser radiation,” in LPM2010, Stuttgart, June 7- June 10 (2010).
  11. A. Ancona, S. Döring, C. Jauregui, F. Röser, J. Limpert, S. Nolte, A. Tünnermann, “Femtosecond and picosecond laser drilling of metals at high repetition rates and average powers,” Opt. Lett. 34(21), 3304–3306 (2009). [CrossRef] [PubMed]
  12. S. Eaton, H. Zhang, P. Herman, F. Yoshino, L. Shah, J. Bovatsek, A. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13(12), 4708–4716 (2005). [CrossRef] [PubMed]
  13. R. R. Gattass, L. R. Cerami, E. Mazur, “Micromachining of bulk glass with bursts of femtosecond laser pulses at variable repetition rates,” Opt. Express 14(12), 5279–5284 (2006). [CrossRef] [PubMed]
  14. R. Weber, V. Onuseit, S. Tscheulin, and T. Graf, “High-efficiency laser processing of CFRP,” in Proc. ICALEO 2013 (2013), Paper LMP 1901.
  15. T. Tamaki, W. Watanabe, K. Itoh, “Laser micro-welding of transparent materials by a localized heat accumulation effect using a femtosecond fiber laser at 1558 nm,” Opt. Express 14(22), 10460–10468 (2006). [CrossRef] [PubMed]
  16. A. A. Cenna, P. Mathew, “Evaluation of cut quality of fibre-reinforced plastic – a review,” Int. J. Mach. Tools Manuf. 37(6), 723–736 (1997). [CrossRef]
  17. D. Herzog, P. Jaeschke, O. Meier, H. Haferkamp, “Investigations on the thermal effect caused by laser cutting with respect to static strength of CFRP,” Int. J. Mach. Tools Manuf. 48(12-13), 1464–1473 (2008). [CrossRef]
  18. A. Goeke, C. Emmelmann, “Influence of laser cutting parameters on CFRP part quality,” Phys. Procedia 5, 253–258 (2010). [CrossRef]
  19. A. Klotzbach, M. Hauser, E. Beyer, “Laser cutting of carbon fibre reinforced polymers using highly brilliant laser beam sources,” Phys. Procedia. 12, 572–577 (2011). [CrossRef]
  20. R. Weber, M. Hafner, A. Michalowski, P. Mucha, T. Graf, “Analysis of thermal damage in laser processing of CFRP,” in Proc. ICALEO 2011 (2011).
  21. R. Weber, C. Freitag, T. Kononenko, M. Hafner, V. Onuseit, P. Berger, T. Graf, “Short-pulse laser processing of CFRP,” Phys. Procedia 39, 137–146 (2012). [CrossRef]
  22. H. Deutsche Edelstahlwerke Gmb, Werkstoffdatenblatt 1.4301_de.pdf, http://www.dew-stahl.com/fileadmin/files/dew-stahl.com/documents/Publikationen/Werkstoffdatenblaetter/RSH/1.4301_de.pdf .
  23. D. E. Kline, “Thermal Conductivity Studies of Polymers,” J. Polym. Sci., Polym. Phys. Ed. 1, 441–450 (1961).
  24. S. D. McIvor, M. I. Darby, G. H. Wostenholm, B. Yates, L. Banfield, R. King, A. Webb, “Thermal conductivity measurements of some glass fibre- and carbon fibre-reinforced plastics,” J. Mater. Sci. 25(7), 3127–3132 (1990). [CrossRef]
  25. P. Morgan, Carbon Fibers and Their Composites (CRC Press, 2005), p. 121.
  26. M. W. Pilling, B. Yates, M. A. Black, P. Tattersall, “The thermal conductivity of carbon fibre-reinforced composites,” J. Mater. Sci. 14(6), 1326–1338 (1979). [CrossRef]
  27. C. Pradere, J. C. Batsale, J. M. Goyhénèche, R. Pailler, S. Dilhaire, “Thermal properties of carbon fibers at very high temperature,” Carbon 47(3), 737–743 (2009). [CrossRef]
  28. R. Rolfes, U. Hammerschmidt, “Transverse thermal conductivity of CFRP laminates; a numerical and experimental validation of approximation formulae,” Compos. Sci. Technol. 54(1), 45–54 (1995). [CrossRef]
  29. F. R. Barnet, M. K. Norr, “A three-dimensional structural model for a high modulus pan-based carbon fibres,” Composites 7(2), 93–99 (1976). [CrossRef]
  30. N. N. Rykalin, Die Wärmegrundlagen des Schweißvorgangs (VEB Verlag Technik, 1957).
  31. D. Radaj, Heat Effects of Welding, Temperature Field, Residual Stress, Distortion (Springer, 1992).
  32. M. Hafner, R. Weber, and T. Graf, “Modeling of laser ablation of CFRP - influence of beam profile,” Stuttgarter Lasertage SLT 12, Neue Messe Stuttgart (2012).
  33. C. Freitag, R. Weber, T. Graf, “Polarization dependence of laser interaction with carbon fibers and CFRP,” Opt. Express 22(2), 1474–1479 (2014). [CrossRef] [PubMed]
  34. T. Graf, R. Weber, V. Onuseit, M. Hafner, C. Freitag, and A. Feuer, “Laser applications from production to machining of composite materials,” in EALA 2012 (2012).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited