OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 9 — May. 5, 2014
  • pp: 11325–11330

Generation of vector vortex beams with a small core multimode liquid core optical fiber

Wei Gao, Xiaobo Hu, Chunyuan Mu, and Peijing Sun  »View Author Affiliations


Optics Express, Vol. 22, Issue 9, pp. 11325-11330 (2014)
http://dx.doi.org/10.1364/OE.22.011325


View Full Text Article

Enhanced HTML    Acrobat PDF (983 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the generation of vector vortex beams using a 10-μm core multimode liquid core optical fiber (LCOF) filled with CS2. The first higher-order modes including radially, azimuthally and hybrid polarized vector modes, as well as the higher-order modes such as LP21 mode and LP31 mode are selectively excited by adjusting the incidence angle of the linearly polarized input Gaussian beam with respect to the fiber axis. The interferograms with single forklet verify the phase singularity of the vector beams generated. Compared to silica optical fibers, the vector vortex beams from the LCOFs have higher excitation efficiency and larger bending tolerance.

© 2014 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(050.4865) Diffraction and gratings : Optical vortices
(260.6042) Physical optics : Singular optics

ToC Category:
Fiber Optics

History
Original Manuscript: March 3, 2014
Revised Manuscript: April 23, 2014
Manuscript Accepted: April 28, 2014
Published: May 2, 2014

Citation
Wei Gao, Xiaobo Hu, Chunyuan Mu, and Peijing Sun, "Generation of vector vortex beams with a small core multimode liquid core optical fiber," Opt. Express 22, 11325-11330 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-9-11325


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. F. Ding, J. X. Pu, “The cross correlation function of partially coherent vortex beam,” Opt. Express 22(2), 1350–1358 (2014). [CrossRef] [PubMed]
  2. J. Hamazaki, R. Morita, K. Chujo, Y. Kobayashi, S. Tanda, T. Omatsu, “Optical-vortex laser ablation,” Opt. Express 18(3), 2144–2151 (2010). [CrossRef] [PubMed]
  3. K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, T. Omatsu, “Using optical vortex to control the chirality of twisted metal nanostructures,” Nano Lett. 12(7), 3645–3649 (2012). [CrossRef] [PubMed]
  4. Z. Y. Wang, N. Zhang, X. C. Yuan, “High-volume optical vortex multiplexing and de-multiplexing for free-space optical communication,” Opt. Express 19(2), 482–492 (2011). [CrossRef] [PubMed]
  5. H. R. Li, J. P. Yin, “Generation of a vectorial Mathieu-like hollow beam with a periodically rotated polarization property,” Opt. Lett. 36(10), 1755–1757 (2011). [CrossRef] [PubMed]
  6. A. Lehmuskero, Y. M. Li, P. Johansson, M. Käll, “Plasmonic particles set into fast orbital motion by an optical vortex beam,” Opt. Express 22(4), 4349–4356 (2014). [CrossRef] [PubMed]
  7. Y. J. Yang, Y. Dong, C. L. Zhao, Y. D. Liu, Y. J. Cai, “Autocorrelation properties of fully coherent beam with and without orbital angular momentum,” Opt. Express 22(3), 2925–2932 (2014). [CrossRef] [PubMed]
  8. P. Schemmel, S. Maccalli, G. Pisano, B. Maffei, M. W. Ng, “Three-dimensional measurements of a millimeter wave orbital angular momentum vortex,” Opt. Lett. 39(3), 626–629 (2014). [CrossRef] [PubMed]
  9. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1(1), 1–57 (2009). [CrossRef]
  10. Q. Zhan, J. R. Leger, “Focus shaping using cylindrical vector beams,” Opt. Express 10(7), 324–331 (2002). [CrossRef] [PubMed]
  11. X. Hao, C. F. Kuang, T. T. Wang, X. Liu, “Phase encoding for sharper focus of the azimuthally polarized beam,” Opt. Lett. 35(23), 3928–3930 (2010). [CrossRef] [PubMed]
  12. K. Huang, Y. Li, “Realization of a subwavelength focused spot without a longitudinal field component in a solid immersion lens-based system,” Opt. Lett. 36(18), 3536–3538 (2011). [CrossRef] [PubMed]
  13. G. H. Yuan, S. B. Wei, X. C. Yuan, “Nondiffracting transversally polarized beam,” Opt. Lett. 36(17), 3479–3481 (2011). [CrossRef] [PubMed]
  14. N. K. Viswanathan, V. V. G. K. Inavalli, “Generation of optical vector beams using a two-mode fiber,” Opt. Lett. 34(8), 1189–1191 (2009). [CrossRef] [PubMed]
  15. V. V. G. K. Inavalli, N. K. Viswanathan, “Switchable vector vortex beam generation using an optical fiber,” Opt. Commun. 283(6), 861–864 (2010). [CrossRef]
  16. Z. Q. Fang, Y. Yao, K. G. Xia, M. Q. Kang, K. Ueda, J. L. Li, “Vector mode excitation in few-mode fiber by controlling incident polarization,” Opt. Commun. 294, 177–181 (2013). [CrossRef]
  17. N. Bozinovic, S. Golowich, P. Kristensen, S. Ramachandran, “Control of orbital angular momentum of light with optical fibers,” Opt. Lett. 37(13), 2451–2453 (2012). [CrossRef] [PubMed]
  18. T. Grosjean, A. Sabac, D. Courjon, “A versatile and stable device allowing the efficient generation of beams with radial, azimuthal or hybrid polarizations,” Opt. Commun. 252(1-3), 12–21 (2005). [CrossRef]
  19. M. Koyama, T. Hirose, M. Okida, K. Miyamoto, T. Omatsu, “Nanosecond vortex laser pulses with millijoule pulse energies from a Yb-doped double-clad fiber power amplifier,” Opt. Express 19(15), 14420–14425 (2011). [CrossRef] [PubMed]
  20. F. F. Dai, Y. H. Xu, X. F. Chen, “Tunable and low bending loss of liquid-core fiber,” Chin. Opt. Lett. 8(1), 14–17 (2010). [CrossRef]
  21. K. Kieu, L. Schneebeli, E. Merzlyak, J. M. Hales, A. DeSimone, J. W. Perry, R. A. Norwood, N. Peyghambarian, “All-optical switching based on inverse Raman scattering in liquid-core optical fibers,” Opt. Lett. 37(5), 942–944 (2012). [CrossRef] [PubMed]
  22. K. Kieu, L. Schneebeli, R. A. Norwood, N. Peyghambarian, “Integrated liquid-core optical fibers for ultra-efficient nonlinear liquid photonics,” Opt. Express 20(7), 8148–8154 (2012). [CrossRef] [PubMed]
  23. K. Kieu, D. Churin, L. Schneebeli, R. A. Norwood, N. Peyghambarian, “Brillouin lasing in integrated liquid-core optical fibers,” Opt. Lett. 38(4), 543–545 (2013). [CrossRef] [PubMed]
  24. O. D. Herrera, L. Schneebeli, K. Kieu, R. A. Norwood, N. Peyghambarian, “Raman-induced frequency shift in CS2-filled integrated,” Opt. Commun. 318, 83–87 (2014). [CrossRef]
  25. S. Kedenburg, M. Vieweg, T. Gissibl, H. Giessen, “Linear refractive index and absorption measurements of nonlinear optical liquids in the visible and near-infrared spectral region,” Opt. Mater. Express 2(11), 1588–1611 (2012). [CrossRef]
  26. A. I. Erokhin, V. I. Kovalev, F. S. Faĭzullov, “Determination of the parameters of a nonlinear response of liquids in an acoustic response region by the method of nondegenerate four-wave interaction,” Sov. J. Quantum Electron. 16(7), 872–877 (1986). [CrossRef]
  27. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).
  28. S. Ramachandran, J. W. Nicholson, S. Ghalmi, M. F. Yan, P. Wisk, E. Monberg, F. V. Dimarcello, “Light propagation with ultralarge modal areas in optical fibers,” Opt. Lett. 31(12), 1797–1799 (2006). [CrossRef] [PubMed]
  29. W. Gao, X. B. Hu, D. Sun, J. Y. Li, “Simultaneous generation and Brillouin amplification of a dark hollow beam with a liquid-core optical fiber,” Opt. Express 20(18), 20715–20720 (2012). [CrossRef] [PubMed]
  30. B. M. Trabold, A. Abdolvand, T. G. Euser, A. M. Walser, P. St. J. Russell, “Amplification of higher-order modes by stimulated Raman scattering in H2-filled hollow-core photonic crystal fiber,” Opt. Lett. 38(5), 600–602 (2013). [CrossRef] [PubMed]
  31. T. Murao, K. Saitoh, M. Koshiba, “Detailed theoretical investigation of bending properties in solid-core photonic bandgap fibers,” Opt. Express 17(9), 7615–7629 (2009). [CrossRef] [PubMed]
  32. K. Nagano, S. Kawakami, S. Nishida, “Change of the refractive index in an optical fiber due to external forces,” Appl. Opt. 17(13), 2080–2085 (1978). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited