OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 9 — May. 5, 2014
  • pp: 11331–11339

Fracture characteristics of ceramic Nd:YAG

Duck-Lae Kim and Byung-Tai Kim  »View Author Affiliations


Optics Express, Vol. 22, Issue 9, pp. 11331-11339 (2014)
http://dx.doi.org/10.1364/OE.22.011331


View Full Text Article

Enhanced HTML    Acrobat PDF (1088 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The fracture of laser material in a ceramic Nd:YAG laser pumped by a fiber-coupled laser diode was analyzed. The fracture of the laser material was found to occur when the critical temperature difference between the center of the material and the surface exceeded 355°C. To quantitatively analyze the material fracture, the heat-generation length and heat-generation radius of the laser material were calculated and the critical pump power per unit volume was examined. Under lasing and non-lasing conditions, the fracture of laser material occurred at 24.41 kW/cm3 and 19.53 kW/cm3, respectively, for 2 at.% ceramic Nd:YAG and 25.57 kW/cm3 and 20.47 kW/cm3, respectively, for 4 at.% ceramic Nd:YAG.

© 2014 Optical Society of America

OCIS Codes
(140.3380) Lasers and laser optics : Laser materials
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.3580) Lasers and laser optics : Lasers, solid-state
(140.6810) Lasers and laser optics : Thermal effects

ToC Category:
Materials

History
Original Manuscript: March 10, 2014
Revised Manuscript: April 28, 2014
Manuscript Accepted: April 28, 2014
Published: May 2, 2014

Citation
Duck-Lae Kim and Byung-Tai Kim, "Fracture characteristics of ceramic Nd:YAG," Opt. Express 22, 11331-11339 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-9-11331


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Koechner, Solid-State Laser Engineering (Springer-Verlag, 1999), Chap. 7.
  2. N. Hodgson and H. Weber, Laser Resonators and Beam Propagation: Fundamentals, Advanced Concepts and Applications (Springer, 2005), Chap. 13.
  3. M. Ohmi, M. Akatsuka, K. Ishikawa, K. Naito, Y. Yonezawa, Y. Nishida, M. Yamanaka, Y. Izawa, S. Nakai, “High-sensitivity two-dimensional thermal- and mechanical-stress-induced birefringence measurements in a Nd:YAG rod,” Appl. Opt. 33(27), 6368–6372 (1994). [CrossRef] [PubMed]
  4. I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics,” Appl. Phys. Lett. 77, 939–941 (2000).
  5. J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramics,” Appl. Phys. B 71(4), 469–473 (2000). [CrossRef]
  6. J. Lu, H. Yagi, K. Takaichi, T. Uematsu, J.-F. Bisson, Y. Feng, A. Shirakawa, K.-I. Ueda, T. Yanagitani, A. A. Kaminskii, “110 W ceramic Nd3+: Y3Al5O12 laser,” Appl. Phys. B 79(1), 25–28 (2004). [CrossRef]
  7. R. Kawai, Y. Miyasaka, K. Otsuka, T. Ohtomo, T. Narita, J.-Y. Ko, I. Shoji, T. Taira, “Oscillation spectra and dynamic effects in a highly-doped microchip Nd:YAG ceramic laser,” Opt. Express 12(10), 2293–2302 (2004). [CrossRef] [PubMed]
  8. I. Shoji, Y. Sato, S. Kurimura, V. Lupei, T. Taira, A. Ikesue, K. Yoshida, “Thermal-birefringence-induced depolarization in Nd:YAG ceramics,” Opt. Lett. 27(4), 234–236 (2002). [CrossRef] [PubMed]
  9. D. Welford, D. M. Rines, B. J. Dinerman, R. Martinsen, “Observation of enhanced thermal lensing due to near-Gaussian pump energy deposition in a laser-diode side-pumped Nd:YAG laser,” IEEE J. Quantum Electron. 28(4), 1075–1080 (1992). [CrossRef]
  10. D. J. Green, An Introduction to the Mechanical Properties of Ceramics (Cambridge University, 1998), Chap. 9.
  11. S. P. Timoshenko and J. N. Goodier, Theory of Elasticity (McGraw-Hill, 1970), Chap. 13.
  12. B. A. Boley and J. H. Weiner, Theory of Thermal Stresses (Dover, 2011), Chap. 8.
  13. Y. A. Cengel, Heat Transfer: A Practical Approach (McGraw-Hill, 2003), Chap. 3.
  14. C.-M. Ok, B.-T. Kim, D.-L. Kim, “The output characteristics of a fiber-coupled laser-diode pumped ceramic Nd:YAG laser due to thermal lensing effect,” Kor. J. Opt. Photonics 17(5), 455–460 (2006). [CrossRef]
  15. A. Lucianetti, T. Graf, R. Weber, H. P. Weber, “Thermooptical properties of transversely pumped composite YAG rods with a Nd-doped core,” IEEE J. Quantum Electron. 36(2), 220–227 (2000). [CrossRef]
  16. Y. Chen, B. Chen, M. K. R. Patle, A. Kar, M. Bass, “Calculation of thermal-gradient-induced stress birefringence in slab Laser-II,” IEEE J. Quantum Electron. 40(7), 917–928 (2004). [CrossRef]
  17. Y. Aoyagi, T. Taira, and I. Shoji, “Thermal analysis simulation using depolarization loss in solid-state microchip laser,” SICE 2003 Annual Conference in Fukui 2, 195–2000 (2003).
  18. J. M. Eichenholz, M. Richardson, “Measurement of thermal lensing in Cr3+-doped colquiriites,” IEEE J. Quantum Electron. 34(5), 910–919 (1998). [CrossRef]
  19. P. J. Hardman, W. A. Clarkson, G. J. Friel, M. Pollnau, D. C. Hanna, “Energy-transfer upconversion and thermal lensing in high-power end-pumped Nd:YLF laser crystals,” IEEE J. Quantum Electron. 35(4), 647–655 (1999). [CrossRef]
  20. Z. Xiong, Z. G. Li, N. Moore, W. L. Huang, G. C. Lim, “Detailed investigation of thermal effects in longitudinally diode-pumped Nd:YVO4 laser,” IEEE J. Quantum Electron. 39(8), 979–986 (2003). [CrossRef]
  21. R. Weber, B. Neuenschwander, M. MacDonald, M. B. Roos, H. P. Weber, “Cooling schemes for longitudinally diode laser-pumped Nd:YAG rods,” IEEE J. Quantum Electron. 34(6), 1046–1053 (1998). [CrossRef]
  22. D. P. H. Hasselman, “Figures-of-merit for the thermal stress resistance of high-temperature brittle materials: a review,” Ceramurgia International 4(4), 147–150 (1978). [CrossRef]
  23. D. Munz and T. Fett, Ceramics (Springer, 1998), Chap. 11.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited