OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 9 — May. 5, 2014
  • pp: 11340–11350

Terahertz plasmonic waveguide based on metal rod arrays for nanofilm sensing

Borwen You, Chien-Chun Peng, Jia-Shing Jhang, Hungh-Hsuan Chen, Chin-Ping Yu, Wei-Chih Lai, Tze-An Liu, Jin-Long Peng, and Ja-Yu Lu  »View Author Affiliations

Optics Express, Vol. 22, Issue 9, pp. 11340-11350 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1700 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A high-aspect-ratio metallic rod array is demonstrated to generate and propagate highly confined terahertz (THz) surface plasmonic waves under end-fire excitation. The transverse modal power distribution and spectral properties of the bound THz plasmonic wave are characterized in two metallic rod arrays with different periods and in two configurations with and without attaching a subwavelength superstrate. The integrated metallic rod array–based waveguide can be used to sense the various thin films deposited on the polypropylene superstrate based on the phase-sensitive mechanism. The sensor exhibits different phase detection sensitivities depending on the modal power immersed in the air gaps between the metallic rods. Deep-subwavelength SiO2 and ZnO nanofilms with an optical path difference of 252 nm, which is equivalent to λ/3968 at 0.300 THz, are used as analytes to test the integrated plasmonic waveguide. Analysis of the refractive index and thickness of molecular membranes indicates that the metallic rod array–based THz waveguide can integrate various biochip platforms for minute molecular detection, which is extremely less than the coherent length of THz waves.

© 2014 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(230.7400) Optical devices : Waveguides, slab
(310.2785) Thin films : Guided wave applications
(160.3918) Materials : Metamaterials
(300.6495) Spectroscopy : Spectroscopy, teraherz
(050.6875) Diffraction and gratings : Three-dimensional fabrication

ToC Category:
Terahertz Optics

Original Manuscript: March 10, 2014
Revised Manuscript: April 22, 2014
Manuscript Accepted: April 28, 2014
Published: May 2, 2014

Virtual Issues
Vol. 9, Iss. 7 Virtual Journal for Biomedical Optics

Borwen You, Chien-Chun Peng, Jia-Shing Jhang, Hungh-Hsuan Chen, Chin-Ping Yu, Wei-Chih Lai, Tze-An Liu, Jin-Long Peng, and Ja-Yu Lu, "Terahertz plasmonic waveguide based on metal rod arrays for nanofilm sensing," Opt. Express 22, 11340-11350 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H.-B. Liu, G. Plopper, S. Earley, Y. Chen, B. Ferguson, X.-C. Zhang, “Sensing minute changes in biological cell monolayers with THz differential time-domain spectroscopy,” Biosens. Bioelectron. 22(6), 1075–1080 (2007). [CrossRef] [PubMed]
  2. M. C. Schaafsma, J. G. Rivas, “Semiconductor plasmonic crystals: active control of THz extinction,” Semicond. Sci. Technol. 28(12), 124003 (2013). [CrossRef]
  3. T. H. Isaac, W. L. Barnes, E. Hendry, “Determining the terahertz optical properties of subwavelength films using semiconductor surface plasmons,” Appl. Phys. Lett. 93(24), 241115 (2008). [CrossRef]
  4. C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernandez-Dominguez, L. Martin-Moreno, F. J. Garcia-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008). [CrossRef]
  5. L. Shen, X. Chen, T.-J. Yang, “Terahertz surface plasmon polaritons on periodically corrugated metal surfaces,” Opt. Express 16(5), 3326–3333 (2008). [CrossRef] [PubMed]
  6. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006). [CrossRef] [PubMed]
  7. J.-T. Kim, J.-J. Ju, S. Park, M.-S. Kim, S.-K. Park, M.-H. Lee, “Chip-to-chip optical interconnect using gold long-range surface plasmon polariton waveguides,” Opt. Express 16(17), 13133–13138 (2008). [CrossRef] [PubMed]
  8. R. Zia, J. A. Schuller, A. Chandran, M. L. Brongersma, “Plasmonics the next chip-scale technology,” Mater. Today 9(7-8), 20–27 (2006). [CrossRef]
  9. S. Lal, S. Link, N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007). [CrossRef]
  10. D. K. Gramotnev, S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010). [CrossRef]
  11. W. L. Barnes, A. Dereux, T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]
  12. R. E. Kunz, K. Cottier, “Optimizing integrated optical chips for label-free (bio-)chemical sensing,” Anal. Bioanal. Chem. 384(1), 180–190 (2006). [CrossRef] [PubMed]
  13. P. V. Lambeck, “Integrated optical sensors for the chemical domain,” Meas. Sci. Technol. 17(8), R93–R116 (2006). [CrossRef]
  14. A. Mazhorova, J. F. Gu, A. Dupuis, M. Peccianti, O. Tsuneyuki, R. Morandotti, H. Minamide, M. Tang, Y. Wang, H. Ito, M. Skorobogatiy, “Composite THz materials using aligned metallic and semiconductor microwires, experiments and interpretation,” Opt. Express 18(24), 24632–24647 (2010). [CrossRef] [PubMed]
  15. B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng, “Hybrid terahertz plasmonic waveguide for sensing applications,” Opt. Express 21(18), 21087–21096 (2013). [CrossRef] [PubMed]
  16. J.-W. Choi, R. Wicker, S.-H. Lee, K.-H. Choi, C.-S. Ha, I. Chung, “Fabrication of 3D biocompatible / biodegradable micro-scaffolds using dynamic mask projection microstereolithography,” J. Mater. Process. Technol. 209(15-16), 5494–5503 (2009). [CrossRef]
  17. M. Farsari, F. Claret-Tournier, S. Huang, C. R. Chatwin, D. M. Budgett, P. M. Birch, R. C. D. Young, J. D. Richardson, “A novel high-accuracy microstereolithography method employing an adaptive electro-optic mask,” J. Mater. Process. Technol. 107(1-3), 167–172 (2000). [CrossRef]
  18. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22(7), 1099–1120 (1983). [CrossRef] [PubMed]
  19. B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng, C.-L. Pan, “Subwavelength plastic wire terahertz time-domain spectroscopy,” Appl. Phys. Lett. 96(5), 051105 (2010). [CrossRef]
  20. J. M. Khosrofian, B. A. Garetz, “Measurement of a Gaussian laser beam diameter through the direct inversion of knife-edge data,” Appl. Opt. 22(21), 3406–3410 (1983). [CrossRef] [PubMed]
  21. Bahaa, E. A. Saleh, and M. C. Teich, Fundamentals of Photonics (New York, Wiley, 1991), Chap. 7.
  22. W. Chen, S. Kirihara, Y. Miyamoto, “Fabrication and measurement of micro three-dimensional photonic crystals of SiO2 ceramic for terahertz wave applications,” J. Am. Ceram. Soc. 90(7), 2078–2081 (2007). [CrossRef]
  23. A. K. Azad, J. Han, W. Zhang, “Terahertz dielectric properties of high-resistivity single-crystal ZnO,” Appl. Phys. Lett. 88(2), 021103 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited