OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 9 — May. 5, 2014
  • pp: 11376–11383

Tamm plasmon-polariton with negative group velocity induced by a negative index meta-material capping layer at metal-Bragg reflector interface

Cunding Liu, Mingdong Kong, and Bincheng Li  »View Author Affiliations

Optics Express, Vol. 22, Issue 9, pp. 11376-11383 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1841 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Influence of a negative refractive index meta-material (NIM) capping layer on properties of Tamm plasmon-polariton at the interface of metal-Bragg reflector structure is investigated. Conditions for excitation of the plasmon-polariton is determined from reflectivity mapping calculation and analyzed with cavity mode theory. For specific thicknesses of capping layers, Tamm plasmon-polariton with negative group velocity is revealed in a wide region of frequency. Different from backward optical propagation induced by negative effective-group-refractive-index in dispersive media, negative group velocity of Tamm plasmon-polariton results from opposite signs of cross-section-integrated field energy and Poynting vector.

© 2014 Optical Society of America

OCIS Codes
(230.1480) Optical devices : Bragg reflectors
(240.0310) Optics at surfaces : Thin films
(240.6690) Optics at surfaces : Surface waves

ToC Category:

Original Manuscript: March 25, 2014
Revised Manuscript: April 24, 2014
Manuscript Accepted: April 24, 2014
Published: May 2, 2014

Cunding Liu, Mingdong Kong, and Bincheng Li, "Tamm plasmon-polariton with negative group velocity induced by a negative index meta-material capping layer at metal-Bragg reflector interface," Opt. Express 22, 11376-11383 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2008).
  2. M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76(16), 165415 (2007). [CrossRef]
  3. S. Brand, M. A. Kaliteevski, R. A. Abram, “Optical Tamm states above the bulk plasma frequency at a Bragg stack/metal interface,” Phys. Rev. B 79(8), 085416 (2009). [CrossRef]
  4. I. Iorsh, P. V. Panicheva, I. A. Slovinskii, M. Kaliteevski, “Coupled Tamm plasmons,” Tech. Phys. Lett. 38(4), 351–353 (2012). [CrossRef]
  5. A. P. Vinogradov, A. V. Dorofeenko, S. G. Erokhin, M. Inoue, A. A. Lisyansky, A. M. Merzlikin, A. B. Granovsky, “surface state peculiarities in one-dimensional photonic crystal interfaces,” Phys. Rev. B 74(4), 045128 (2006). [CrossRef]
  6. H. Zhou, G. Yang, K. Wang, H. Long, P. Lu, “Multiple optical Tamm states at a metal-dielectric mirror interface,” Opt. Lett. 35(24), 4112–4114 (2010). [CrossRef] [PubMed]
  7. M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, A. V. Kavokin, “Tamm plasmon polaritons: Slow and spatially compact light,” Appl. Phys. Lett. 92(25), 251112 (2008). [CrossRef]
  8. C. Grossmann, C. Coulson, G. Christmann, I. Farrer, H. E. Beere, D. A. Ritchie, J. J. Baumberg, “Tunable polaritons at room temperature with strongly coupled Tamm Plasmon polaritons in metal/air-gap microcavities,” Appl. Phys. Lett. 98(23), 231105 (2011). [CrossRef]
  9. W. L. Zhang, S. F. Yu, “Bistable switching using an optical Tamm cavity with a Kerr medium,” Opt. Commun. 283(12), 2622–2626 (2010). [CrossRef]
  10. T. Goto, A. V. Dorofeenko, A. M. Merzlikin, A. V. Baryshev, A. P. Vinogradov, M. Inoue, A. A. Lisyansky, A. B. Granovsky, “Optical Tamm states in one-dimensional magnetophotonic structures,” Phys. Rev. Lett. 101(11), 113902 (2008). [CrossRef] [PubMed]
  11. Y. Gong, X. Liu, H. Lu, L. Wang, G. Wang, “Perfect absorber supported by optical Tamm states in plasmonic waveguide,” Opt. Express 19(19), 18393–18398 (2011). [CrossRef] [PubMed]
  12. X. Zhang, J. Song, X. Li, J. Feng, H. Sun, “Optical Tamm states enhanced broad-band absorption of organic solar cells,” Appl. Phys. Lett. 101(24), 243901 (2012). [CrossRef]
  13. M. A. Kaliteevski, A. A. Lazarenko, “Reduced adsorption of light by metallic intra-cavity contacts: Tamm Plasmon based laser mode engineering,” Tech. Phys. Lett. 39(8), 698–701 (2013). [CrossRef]
  14. R. Brückner, M. Sudzius, S. I. Hintschich, H. Fröb, V. G. Lyssenko, M. A. Kaliteevski, I. Iorsh, R. A. Abram, A. V. Kavokin, K. Leo, “Parabolic polarization splitting of Tamm states in a metal-organic microcavity,” Appl. Phys. Lett. 100(6), 062101 (2012). [CrossRef]
  15. I. V. Treshin, V. V. Klimov, P. N. Melentiev, V. I. Balykin, “Optical Tamm state and extraordinary light transmission through a nanoaperture,” Phys. Rev. A 75, 053812 (2013).
  16. A. Kavokin, I. Shelykh, G. Malpuech, “Optical Tamm states for the fabrication of polariton lasers,” Appl. Phys. Lett. 87(26), 261105 (2005). [CrossRef]
  17. A. Namdar, I. V. Shadrivov, Y. S. Kivshar, “Backward Tamm states in left-handed metamaterials,” Appl. Phys. Lett. 89(11), 114104 (2006). [CrossRef]
  18. A. Namdar, S. Roshan Entezar, H. Tajalli, Z. Eyni, “Backward nonlinear surface Tamm states in left-handed metamaterials,” Opt. Express 16(14), 10543–10548 (2008). [CrossRef] [PubMed]
  19. A. Namdar, I. V. Shadrivov, Y. S. Kivshar, “Excitation of backward Tamm states at an interface between a periodic photonic crystal and a left-handed metamaterial,” Phys. Rev. A 75(5), 053812 (2007). [CrossRef]
  20. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312(5775), 892–894 (2006). [CrossRef] [PubMed]
  21. H. A. Macleod, Thin-Film Optical Filters (Academic, 2001).
  22. V. Veselago, L. Braginsky, V. Shklover, C. Hafner, “Negative refractive index materials,” J. Comput. Theor. Nanosci. 3, 1 (2006).
  23. S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005). [CrossRef] [PubMed]
  24. V. M. Shalaev, “Optical negative –index metamaterials,” Nat. Photonics 1(1), 41–48 (2007). [CrossRef]
  25. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008). [CrossRef] [PubMed]
  26. S. P. Burgos, R. de Waele, A. Polman, H. A. Atwater, “A single-layer wide-angle negative-index metamaterial at visible frequencies,” Nat. Mater. 9(5), 407–412 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited