OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 9 — May. 5, 2014
  • pp: 11384–11391

Design and simulation of omnidirectional reflective color filters based on metal-dielectric-metal structure

Chenying Yang, Weidong Shen, Yueguang Zhang, Hao Peng, Xing Zhang, and Xu Liu  »View Author Affiliations

Optics Express, Vol. 22, Issue 9, pp. 11384-11391 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2348 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose omnidirectional reflective color filters based on metal-dielectric-metal subwavelength grating structure. By particle swarm optimization, the structural parameters of three color filters (yellow, magenta, cyan) are obtained. The optimized filters can present the same perceived specular color at unpolarized illumination for a broad range of incident angles. The reflectance curves at different incident angles keep almost invariable and the color difference is less than 6 in CIEDE2000 formula up to 45°. Angle-insensitive properties including the incident angular tolerance, azimuthal angular tolerance and the polarization effect are investigated thoroughly to construct a real omnidirectional color filter. Through the analysis of the magnetic field, the physical origin is verified that the total absorption band at specific wavelength results from the localized surface plasmon resonance responsible for the angle insensitive spectral filtering.

© 2014 Optical Society of America

OCIS Codes
(050.6624) Diffraction and gratings : Subwavelength structures
(230.7408) Optical devices : Wavelength filtering devices

ToC Category:
Optical Devices

Original Manuscript: April 3, 2014
Revised Manuscript: April 25, 2014
Manuscript Accepted: April 28, 2014
Published: May 2, 2014

Chenying Yang, Weidong Shen, Yueguang Zhang, Hao Peng, Xing Zhang, and Xu Liu, "Design and simulation of omnidirectional reflective color filters based on metal-dielectric-metal structure," Opt. Express 22, 11384-11391 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 1999).
  2. H. A. Macleod, Thin Film Optical Filters (Institute of Physics Pub, 2001).
  3. A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, and S. A. Yanshin, “Design of multilayer coatings with specific angular dependencies of color properties,” in Conference on Optical Interference Coatings (Optical Society of America, 2007), paperWB2. [CrossRef]
  4. S. S. Wang, R. Magnusson, “Design of waveguide-grating filters with symmetrical line shapes and low sidebands,” Opt. Lett. 19(12), 919–921 (1994). [CrossRef] [PubMed]
  5. S. S. Wang, R. Magnusson, “Multilayer waveguide-grating filters,” Appl. Opt. 34(14), 2414–2420 (1995). [CrossRef] [PubMed]
  6. S. Tibuleac, R. Magnusson, “Reflection and transmission guided-mode resonance filters,” J. Opt. Soc. Am. A 14(7), 1617–1626 (1997). [CrossRef]
  7. T. Xu, Y. K. Wu, X. Luo, L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1, 59 (2010).
  8. K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7(9), 557–561 (2012). [CrossRef] [PubMed]
  9. J. Clausen, A. B. Christiansen, J. Garnaes, N. A. Mortensen, A. Kristensen, “Color effects from scattering on random surface structures in dielectrics,” Opt. Express 20(4), 4376–4381 (2012). [CrossRef] [PubMed]
  10. Y. K. R. Wu, A. E Hollowell, C. Zhang, L J. Guo, “Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit,” Sci. Rep. 3, 1194 (2013).
  11. C. Yang, L. Hong, W. Shen, Y. Zhang, X. Liu, H. Zhen, “Design of reflective color filters with high angular tolerance by particle swarm optimization method,” Opt. Express 21(8), 9315–9323 (2013). [CrossRef] [PubMed]
  12. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  13. K. Yee, “Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media,” IEEE Trans. Antenn. Propag. 14(3), 302–307 (1966). [CrossRef]
  14. A. Taflove, “Application of the finite-difference time-domain method to sinusoidal steady-state electromagnetic-penetration problems,” IEEE Trans. Electromagn. Compat. 22(3), 191–202 (1980). [CrossRef]
  15. K. S. Kunz and R. J. Luebbers, The Finite Difference Time Domain Method for Electromagnetics (CRC, 1993).
  16. T. Allen and C. H. Susan, Computational Electrodynamics: the Finite-Difference Time-Domain Method (Artech House, 2005).
  17. R. C. Eberhart, J.Kennedy, and Y.Shi, Swarm Intelligence (Morgan Kaufmann, 2001).
  18. CIE, Improvement to Industrial Colour Difference Evaluation (CIE, 2001).
  19. G. Sharma, W. Wu, E. N. Dalal, “The CIEDE2000 color-difference formula: implementation notes, supplementary test data, and mathematical observations,” Color Res. Appl. 30(1), 21–30 (2005). [CrossRef]
  20. W. L. Barnes, A. Dereux, T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited