OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 22, Iss. S1 — Jan. 13, 2014
  • pp: A120–A131

Optical absorption enhancement in 3D silicon oxide nano-sandwich type solar cell

Amirkianoosh Kiani, Krishnan Venkatakrishnan, and Bo Tan  »View Author Affiliations

Optics Express, Vol. 22, Issue S1, pp. A120-A131 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2175 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Recent research in the field of photovoltaic and solar cell fabrication has shown the potential to significantly enhance light absorption in thin-film solar cells by using surface texturing and nanostructure coating techniques. In this paper, for the first time, we propose a new method for nano sandwich type thin-film solar cell fabrication by combining the laser amorphization (2nd solar cell generation) and laser nanofibers generation (3rd solar cell generation) techniques. In this novel technique, the crystalline silicon is irradiated by megahertz frequency femtosecond laser pulses under ambient conditions and the multi-layer of amorphorized silicon and nano fibrous layer are generated in the single-step on top of the silicon substrate. Light spectroscopy results show significant enhancement of light absorption in the generated multi layers solar cells (Silicon Oxide nanofibers / thin-film amorphorized silicon). This method is single step and no additional materials are added and both layers of the amorphorized thin-film silicon and three-dimensional (3D) silicon oxide nanofibrous structures are grown on top of the silicon substrate after laser irradiation. Finally, we suggest how to maximize the light trapping and optical absorption of the generated nanofibers/thin-film cells by optimizing the laser pulse duration.

© 2013 Optical Society of America

OCIS Codes
(040.5350) Detectors : Photovoltaic
(140.3390) Lasers and laser optics : Laser materials processing
(310.0310) Thin films : Thin films
(310.1210) Thin films : Antireflection coatings
(310.4165) Thin films : Multilayer design
(220.4241) Optical design and fabrication : Nanostructure fabrication
(050.6875) Diffraction and gratings : Three-dimensional fabrication

ToC Category:
Light Trapping for Photovoltaics

Original Manuscript: August 15, 2013
Manuscript Accepted: October 22, 2013
Published: December 16, 2013

Amirkianoosh Kiani, Krishnan Venkatakrishnan, and Bo Tan, "Optical absorption enhancement in 3D silicon oxide nano-sandwich type solar cell," Opt. Express 22, A120-A131 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Green, “Crystalline and thin-film silicon solar cells: state of the art and future potential,” Sol. Energy 74(3), 181–192 (2003). [CrossRef]
  2. K. R. Catchpole, M. J. McCann, K. J. Weber, and A. W. Blakers, “A review of thin-film crystalline silicon for solar cell applications. part 2: Foreign substrates,” Sol. Energy Mater. Sol. Cells 68, 173–215 (2001). [CrossRef]
  3. A. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovoltaics Res. Appl. 12(23), 113–142 (2004). [CrossRef]
  4. T. Söderström, F. Haug, V. Terrazzoni-Daudrix, and C. Ballif, “Optimization of amorphous silicon thin film solar cells for flexible photovoltaics,” J. Appl. Phys. 103(11), 114509 (2008). [CrossRef]
  5. J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009). [CrossRef] [PubMed]
  6. J. Arch, J. Werner, and E. Bauser, “Hall effect analysis of liquid phase epitaxy silicon for thin film solar cells,” Sol. Energy Mater. Sol. Cells 29(4), 387–396 (1993). [CrossRef]
  7. Z. Shi, W. Zhang, G. Zheng, V. Chin, A. Stephens, M. Green, and R. Bergmann, “The effects of solvent and dopant impurities on the performance of LPE silicon solar cells,” Sol. Energy Mater. Sol. Cells 41–42, 53–60 (1996). [CrossRef]
  8. Y. Akimov, K. Ostrikov, and E. Li, “Surface plasmon enhancement of optical absorption in thin-film silicon solar cells,” Plasmonics 4(2), 107–113 (2009). [CrossRef]
  9. Y. Lu and A. Lal, “High-efficiency ordered silicon nano-conical-frustum array solar cells by self-powered parallel electron lithography,” Nano Lett. 10(11), 4651–4656 (2010). [CrossRef] [PubMed]
  10. L. Tsakalakos, J. Balch, J. Fronheiser, B. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett. 91(23), 233117 (2007). [CrossRef]
  11. A. Kiani, K. Venkatakrishnan, and B. Tan, “Enhancement of the optical absorption of thin-film of amorphorized silicon for photovoltaic energy conversion,” Sol. Energy 85(9), 1817–1823 (2011). [CrossRef]
  12. D. Bouhafs, A. Moussi, A. Chikouche, and J. Ruiz, “Design and simulation of antireflection coating systems for optoelectronic devices: Application to silicon solar cells,” Sol. Energy Mater. Sol. Cells 52(1–2), 79–93 (1998). [CrossRef]
  13. Y. Inomata, K. Fukui, and K. Shirasawa, “Surface texturing of large area multicrystalline silicon solar cells using reactive ion etching method,” Sol. Energy Mater. Sol. Cells 48(1–4), 237–242 (1997). [CrossRef]
  14. V. Ferry, M. Verschuuren, H. Li, R. Schropp, H. Atwater, and A. Polman, “Improved red-response in thin film a-si: H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95(18), 183503 (2009). [CrossRef]
  15. A. Zaniewski, M. Loster, and A. Zettl, “A one-step process for localized surface texturing and conductivity enhancement in organic solar cells,” Appl. Phys. Lett. 95(10), 103308 (2009). [CrossRef]
  16. H. Park, S. Kwon, J. Lee, H. Lim, S. Yoon, and D. Kim, “Improvement on surface texturing of single crystalline silicon for solar cells by saw-damage etching using an acidic solution,” Sol. Energy Mater. Sol. Cells 93(10), 1773–1778 (2009). [CrossRef]
  17. A. Chutinan, C. Li, N. Kherani, and S. Zukotynski, “Wave-optical studies of light trapping in submicrometre-textured ultra-thin crystalline silicon solar cells,” J. Phys. D Appl. Phys. 44(26), 262001 (2011). [CrossRef]
  18. J. Y. Jung, Z. Guo, S. W. Jee, H. D. Um, K. T. Park, and J. H. Lee, “A strong antireflective solar cell prepared by tapering silicon nanowires,” Opt. Express 18(S3), A286–A292 (2010). [CrossRef] [PubMed]
  19. W. Zhou, M. Tao, L. Chen, and H. Yang, “Microstructured surface design for omnidirectional antireflection coatings on solar cells,” J. Appl. Phys. 102(10), 103105 (2007). [CrossRef]
  20. K. Kim, T. Kim, H. Park, S. Kim, S. Cho, J. Yi, and B. Choi, “UV laser direct texturing for high efficiency multicrystalline silicon solar cell,” Appl. Surf. Sci. 264, 404–409 (2013). [CrossRef]
  21. L. Dobrzanski, A. Drygaa, P. Panek, M. Lipinski, and P. Zieba, “Development of the laser method of multicrystalline silicon surface texturization,” Arch. Mater. Sci. Eng. 38, 5–11 (2009).
  22. B. Nayak, V. Iyengar, and M. Gupta, “Efficient light trapping in silicon solar cells by ultrafast-laser-induced self-assembled micro/nano structures,” Prog. Photovoltaics Res. Appl. 19(6), 631–639 (2011). [CrossRef]
  23. Z. Q. Li, X. D. Li, Q. Q. Liu, X. H. Chen, Z. Sun, C. Liu, X. J. Ye, and S. M. Huang, “Core/shell structured nayf4:Yb3+/er3+/gd+3 nanorods with au nanoparticles or shells for flexible amorphous silicon solar cells,” Nanotechnology 23(2), 025402 (2012). [CrossRef] [PubMed]
  24. C. Eminian, F. Haug, O. Cubero, X. Niquille, and C. Ballif, “Photocurrent enhancement in thin film amorphous silicon solar cells with silver nanoparticles,” Prog. Photovoltaics Res. Appl. 19(3), 260–265 (2011). [CrossRef]
  25. P. Spinelli, M. Hebbink, C. van Lare, M. Verschuuren, R. de Waele, and A. Polman, “Plasmonic anti-reflection coating for thin film solar cells,” in Optical Nanostructures for Photovoltaics (Optical Society of America, 2010).
  26. X. Chen, B. Jia, J. K. Saha, B. Cai, N. Stokes, Q. Qiao, Y. Wang, Z. Shi, and M. Gu, “Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles,” Nano Lett. 12(5), 2187–2192 (2012). [CrossRef] [PubMed]
  27. S. Fei, S. Lee, S. Pursel, J. Basham, A. Hess, C. Grimes, M. Horn, T. Mallouk, and H. Allcock, “Electrolyte infiltration in phosphazene-based dye-sensitized solar cells,” J. Power Sources 196(11), 5223–5230 (2011). [CrossRef]
  28. X. Yan, D. Poxson, J. Cho, R. Welser, A. Sood, J. Kim, and E. Schubert, “Enhanced omnidirectional photovoltaic performance of solar cells using multiple-discrete-layer tailored-and low-refractive index anti-reflection coatings,” Adv. Funct. Mater. 23(5), 583–590 (2013). [CrossRef]
  29. T. Liu, J. Eukel, H. Bagaria, M. Wong, M. Pasquali, and H. Schmidt, “Performance of CDSE tetrapods-gold as nanostructure electrochemical materials in photovoltaic cells,” in 34th Photovoltaic Specialists Conference (IEEE, 2009), 002074–002079.
  30. D. Ge, V. Domnich, and Y. Gogotsi, “High-resolution transmission electron microscopy study of metastable silicon phases produced by nanoindentation,” J. Appl. Phys. 93(5), 2418–2423 (2003). [CrossRef]
  31. A. Kiani, K. Venkatakrishnan, and B. Tan, “Micro/nano scale amorphization of silicon by femtosecond laser irradiation,” Opt. Express 17(19), 16518–16526 (2009). [CrossRef] [PubMed]
  32. N. Park, T. Kim, and S. Park, “Band gap engineering of amorphous silicon quantum dots for light-emitting diodes,” Appl. Phys. Lett. 78(17), 2575–2577 (2001). [CrossRef]
  33. P. Woodard and J. Dryden, “Thermal analysis of a laser pulse for discrete spot surface transformation hardening,” J. Appl. Phys. 85(5), 2488–2496 (1999). [CrossRef]
  34. J. Liu, R. Yen, H. Kurz, and N. Bloembergen, “Phase transformation on and charged particle emission from a silicon crystal surface, induced by picosecond laser pulses,” Appl. Phys. Lett. 39(9), 755–757 (1981). [CrossRef]
  35. A. Kiani, K. Venkatakrishnan, and B. Tan, “Direct laser writing of amorphous silicon on si-substrate induced by high repetition femtosecond pulses,” J. Appl. Phys. 108(7), 074907 (2010). [CrossRef]
  36. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010). [CrossRef] [PubMed]
  37. P. Heil, H. Kang, H. Choi, and K. Kim, “TiO2 nanoparticle-nanofiber composites and their application in dye-sensitized solar cells,” in 10th Conference on Nanotechnology (IEEE, 2010), pp. 482–485.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited