OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 22, Iss. S1 — Jan. 13, 2014
  • pp: A167–A178

Suppressing lossy-film-induced angular mismatches between reflectance and transmittance extrema: optimum optical designs of interlayers and AR coating for maximum transmittance into active layers of CIGS solar cells

Yin-Jung Chang  »View Author Affiliations


Optics Express, Vol. 22, Issue S1, pp. A167-A178 (2014)
http://dx.doi.org/10.1364/OE.22.00A167


View Full Text Article

Enhanced HTML    Acrobat PDF (1345 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The investigation of optimum optical designs of interlayers and antireflection (AR) coating for achieving maximum average transmittance (Tave) into the CuIn1−xGaxSe2 (CIGS) absorber of a typical CIGS solar cell through the suppression of lossy-film-induced angular mismatches is described. Simulated-annealing algorithm incorporated with rigorous electromagnetic transmission-line network approach is applied with criteria of minimum average reflectance (Rave) from the cell surface or maximum Tave into the CIGS absorber. In the presence of one MgF2 coating, difference in Rave associated with optimum designs based upon the two distinct criteria is only 0.3% under broadband and nearly omnidirectional incidence; however, their corresponding Tave values could be up to 14.34% apart. Significant Tave improvements associated with the maximum-Tave-based design are found mainly in the mid to longer wavelengths and are attributed to the largest suppression of lossy-film-induced angular mismatches over the entire CIGS absorption spectrum. Maximum-Tave-based designs with a MgF2 coating optimized under extreme deficiency of angular information is shown, as opposed to their minimum-Rave-based counterparts, to be highly robust to omnidirectional incidence.

© 2014 Optical Society of America

OCIS Codes
(310.1210) Thin films : Antireflection coatings
(310.6860) Thin films : Thin films, optical properties
(350.6050) Other areas of optics : Solar energy
(310.4165) Thin films : Multilayer design

ToC Category:
Photovoltaics

History
Original Manuscript: November 4, 2013
Revised Manuscript: December 19, 2013
Manuscript Accepted: December 25, 2013
Published: January 9, 2014

Citation
Yin-Jung Chang, "Suppressing lossy-film-induced angular mismatches between reflectance and transmittance extrema: optimum optical designs of interlayers and AR coating for maximum transmittance into active layers of CIGS solar cells," Opt. Express 22, A167-A178 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-S1-A167


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,” Prog. Photovolt: Res. Appl.16, 235–239 (2008). [CrossRef]
  2. A. Chirilă, S. Buecheler, F. Pianezzi, P. Bloesch, C. Gretener, A. R. Uhl, C. Fella, L. Kranz, J. Perrenoud, S. Seyrling, R. Verma, S. Nishiwaki, Y. E. Romanyuk, G. Bilger, and A. N. Tiwari, “Highly efficient Cu(In,Ga)Se2solar cells grown on flexible polymer films,” Nat. Mater.10, 857–861 (2011). [CrossRef]
  3. Y.-J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano. Lett.8(5), 1501–1505 (2008). [CrossRef] [PubMed]
  4. J. W. Leem, Y. M. Song, and J. S. Yu, “Broadband wide-angle antireflection enhancement in AZO/Si shell/core subwavelength grating structures with hydrophobic surface for Si-based solar cells,” Opt. Express19(S5), A1155–A1164 (2011). [CrossRef] [PubMed]
  5. P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun.3, 692 (2012). [CrossRef] [PubMed]
  6. S. J. Oh, S. Chhajed, D. J. Poxson, J. Cho, E. F. Schubert, S. J. Tark, D. Kim, and J. K. Kim, “Enhanced broadband and omni-directional performance of polycrystalline Si solar cells by using discrete multilayer antireflection coatings,” Opt. Express21(S1), A157–A166 (2013). [CrossRef] [PubMed]
  7. V. E. Ferry, M. A. Verschuuren, M. C. v. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano. Lett.11, 4239–4245 (2011). [CrossRef] [PubMed]
  8. B.-K. Shin, T.-I. Lee, J. Xiong, C. Hwang, G. Noh, J.-H. Cho, and J.-M. Myoung, “Bottom-up grown ZnO nanorods for an antireflective moth-eye structure on CuInGaSe2solar cells,” Sol. Energy Mater. Sol. Cells95(9), 2650–2654 (2011). [CrossRef]
  9. Y.-J. Chang and Y.-T. Chen, “Broadband omnidirectional antireflection coatings for metal-backed solar cells optimized using simulated annealing algorithm incorporated with solar spectrum,” Opt. Express19(24), A875–A887 (2011). [CrossRef] [PubMed]
  10. S. Hwang and J.-H. Jang, “3D simulations for the optimization of antireflection subwavelength structures in CIGS solar cells,” in 38th IEEE Photovoltaic Specialists Conference (PVSC), pp. 000864–000867 (2012).
  11. J. Mann, J. Li, I. Repins, K. Ramanathan, S. Glynn, C. DeHart, and R. Noufi, “Reflection optimization for alternative thin-film photovoltaics,” IEEE J. Photovolt.3(1), 472–475 (2013). [CrossRef]
  12. M. -Y. Hsieh, S.-Y. Kuo, H.-V. Han, J.-F. Yang, Y.-K. Liao, F.-I. Lai, and H.-C. Kuo, “Enhanced broadband and omnidirectional performance of Cu(In,Ga)Se2solar cells with ZnO functional nanotree arrays,” Nanoscale5, 3841–3846 (2013). [CrossRef] [PubMed]
  13. A. Čampa, J. Krč, J. Malmström, M. Edoff, F. Smole, and M. Topič, “The potential of textured front ZnO and flat TCO/metal back contact to improve optical absorption in thin Cu(In,Ga)Se2 solar cells,” Thin Solid Films515(15), 5968–5972 (2007). [CrossRef]
  14. Y.-J. Chang and C.-S. Lai, “Toward maximum transmittance into absorption layers in solar cells: investigation of lossy-film-induced mismatches between reflectance and transmittance extrema,” Opt. Lett.38(17), 3257–3260 (2013). [CrossRef] [PubMed]
  15. P. J. M. van Laarhoven and E. H. L. Aarts, Simulated Annealing: Theory and Applications (Kluwer Academic Publishers, 1987).
  16. Z. Qiao, C. Agashe, and D. Mergel, “Dielectric modeling of transmittance spectra of thin ZnO:Al films,” Thin Solid Films496, 520–525 (2006). [CrossRef]
  17. K. Ellmer, A. Klein, and B. Rech, ed., Transparent Conductive Zinc Oxide: Basics and Applications in Thin Film Solar Cells (Springer, 2010).
  18. J. Li, J. Chen, M. N. Sestak, C. Thornberry, and R. W. Collins, “Spectroscopic ellipsometry studies of thin film CdTe and CdS: From dielectric functions to solar cell structures,” in 34th IEEE Photovoltaic Specialists Conf. pp. 001982–001987 (2009).
  19. P. D. Paulson, R. W. Birkmire, and W. N. Shafarmana, “Optical characterization of CuIn1−x Gax Se2 alloy thin films by spectroscopic ellipsometry,” J. Appl. Phys.94(2), 879–888 (2003). [CrossRef]
  20. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1997).
  21. D. M. Pozar, Microwave Engineering (Addison-Wesley, 1993).
  22. P. Yeh, Optical Waves in Layered Medium (Wiley, 2005).
  23. J. Krč, G. Cernivec, A. Čampa, J. Malmström, M. Edoff, F. Smole, and M. Topič, “Optical and electrical modeling of Cu(In,Ga)Se2solar cells,” Opt. Quantum Electron.38(12–14), 1115–1123 (2006).
  24. N. G. Dhere, “Toward GW/year of CIGS production within the next decade,” Sol. Energy Mater. Sol. Cells91, 1376–1382 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited