OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 22, Iss. S1 — Jan. 13, 2014
  • pp: A188–A197

Index-matched IWKB method for the measurement of spatially varying refractive index profiles within thin-film photovoltaics

Y. T. Pang, M. Bossart, and M. D. Eisaman  »View Author Affiliations


Optics Express, Vol. 22, Issue S1, pp. A188-A197 (2014)
http://dx.doi.org/10.1364/OE.22.00A188


View Full Text Article

Enhanced HTML    Acrobat PDF (1394 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In many thin-film photovoltaic devices, the photoactive layer has a spatially varying refractive index in the substrate-normal direction, but measurement of this variation with high spatial resolution is difficult due to the thinness of these layers (typically 200 nm for organic photovoltaics). We demonstrate a new method for reconstructing the depth-dependent refractive-index profile with high spatial resolution (~10 nm at a wavelength of 500 nm) in thin (200 nm) photoactive layers by depositing a relatively thick index-matched layer (1-10 μm) adjacent to the photoactive layer and applying the Inverse Wentzel-Kramers-Brillouin (IWKB) method. This novel technique, which we refer to as index-matched IWKB (IM-IWKB), is applicable to any thin film, including the photoactive layers of a broad range of thin-film photovoltaics.

© 2014 Optical Society of America

OCIS Codes
(040.5350) Detectors : Photovoltaic
(160.4890) Materials : Organic materials
(310.3840) Thin films : Materials and process characterization
(310.6860) Thin films : Thin films, optical properties
(350.6050) Other areas of optics : Solar energy
(310.2785) Thin films : Guided wave applications

ToC Category:
Photovoltaics

History
Original Manuscript: November 8, 2013
Revised Manuscript: December 30, 2013
Manuscript Accepted: January 4, 2014
Published: January 13, 2014

Citation
Y. T. Pang, M. Bossart, and M. D. Eisaman, "Index-matched IWKB method for the measurement of spatially varying refractive index profiles within thin-film photovoltaics," Opt. Express 22, A188-A197 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-S1-A188


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. O. Lundberg, M. Edoff, and L. Stolt, “The effect of Ga-grading in CIGS thin film solar cells,” Thin Solid Films480–481, 520–525 (2005). [CrossRef]
  2. D. S. Germack, C. K. Chan, R. J. Kline, D. A. Fischer, D. J. Gundlach, M. F. Toney, L. J. Richter, and D. M. DeLongchamp, “Interfacial segregation in polymer/fullerene blend films for photovoltaic devices,” Macromolecules43(8), 3828–3836 (2010). [CrossRef]
  3. A. Ashraf, D. M. N. M. Dissanayake, D. S. Germack, C. R. Weiland, and M. D. Eisaman, “Confinement-induced reduction in phase segregation and interchain disorder in bulk heterojunction films,” ACS Nano (2013).
  4. B. H. Hamadani, S. Jung, P. M. Haney, L. J. Richter, and N. B. Zhitenev, “Origin of nanoscale variations in photoresponse of an organic solar cell,” Nano Lett.10(5), 1611–1617 (2010). [CrossRef] [PubMed]
  5. R. Scheer, C. Knieper, and L. Stolt, “Depth dependent collection functions in thin film chalcopyrite solar cells,” Appl. Phys. Lett.67(20), 3007–3009 (1995). [CrossRef]
  6. R. Scheer, M. Wilhelm, H. J. Lewerenz, H. W. Schock, and L. Stolt, “Determination of charge carrier collecting regions in chalcopyrite heterojunction solar cells by electron-beam-induced current measurements,” Sol. Energy Mater. Sol. Cells49(1–4), 299–309 (1997). [CrossRef]
  7. R. Kniese, M. Powalla, and U. Rau, “Evaluation of electron beam induced current profiles of Cu(In,Ga)Se2 solar cells with different Ga-cotents,” Thin Solid Films517(7), 2357–2359 (2009). [CrossRef]
  8. D. M. N. M. Dissanayake, A. Ashraf, Y. Pang, and M. D. Eisaman, “Mapping spatially resolved charge collection probability within P3HT:PCBM bulk heterojunction photovoltaics,” Adv. Energy Mater. (2013).
  9. R. A. Marsh, C. Groves, and N. C. Greenham, “A microscopic model for the behavior of nanostructured organic photovoltaic devices,” J. Appl. Phys.101(8), 083509 (2007). [CrossRef]
  10. W. S. Koh, M. Pant, Y. A. Akimov, W. P. Goh, and Y. Li, “Three-dimensional optoelectronic model for organic bulk heterojunction solar cells,” IEEE J. Photovoltaics1(1), 84–92 (2011). [CrossRef]
  11. Z. Cao, Y. Jiang, Q. Shen, X. Dou, and Y. Chen, “Exact analytical method for planar optical waveguides with arbitrary index profile,” J. Opt. Soc. Am. A16(9), 2209–2212 (1999). [CrossRef]
  12. K. S. Chiang, “Construction of refractive-index profiles of planar dielectric waveguides from the distribution of effective indexes,” J. Lightwave Technol.3(2), 385–391 (1985). [CrossRef]
  13. L. P. Shi, E. Y. B. Pun, and P. S. Chung, “Extended IWKB method for determination of the refractive=index profile in optical waveguides,” Opt. Lett.20(15), 1622–1624 (1995). [CrossRef] [PubMed]
  14. H. Zhu, Z. Cao, and Q. Shen, “Construction of refractive-index profiles of planar waveguides with additional information obtained from surface plasmon resonance,” Appl. Opt.44(16), 3174–3178 (2005). [CrossRef] [PubMed]
  15. I. Lumerical Solution, http://www.lumerical.com/tcad-products/fdtd/ .
  16. D. M. N. M. Dissanayake, A. Ashraf, Y. Pang, and M. D. Eisaman, “Guided-mode quantum efficiency: A novel optoelectronic characterization technique,” Rev. Sci. Instrum.83(11), 114704 (2012). [CrossRef] [PubMed]
  17. R. Ulrich and R. Torge, “Measurement of thin film parameters with a prism coupler,” Appl. Opt.12(12), 2901–2908 (1973). [CrossRef] [PubMed]
  18. P. K. Tien, R. Ulrich, and R. J. Martin, “Modes of propagating light waves in thin deposited semiconductor films,” Appl. Phys. Lett.14(9), 291–294 (1969). [CrossRef]
  19. Y. Pochi, Optical Waves in Layered Media (John Wiley, 1988).
  20. G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, “Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions,” Science270(5243), 1789–1791 (1995). [CrossRef]
  21. M. Khardani, M. Bouaïcha, and B. Bessaïs, “Bruggeman effective medium approach for modelling optical properties of porous silicon: comparison with experiment,” Phys. Status Solidi4(c), 1986–1990 (2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited