OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 22, Iss. S1 — Jan. 13, 2014
  • pp: A21–A27

Photoelectrochemical activity on Ga-polar and N-polar GaN surfaces for energy conversion

Yan-Gu Lin, Yu-Kuei Hsu, Antonio M. Basilio, Yit-Tsong Chen, Kuei-Hsien Chen, and Li-Chyong Chen  »View Author Affiliations


Optics Express, Vol. 22, Issue S1, pp. A21-A27 (2014)
http://dx.doi.org/10.1364/OE.22.000A21


View Full Text Article

Enhanced HTML    Acrobat PDF (1412 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Hydrogen generation through direct photoelectrolysis of water was studied using photoelectrochemical cells made of different facets of free-standing polar GaN system. To build the fundamental understanding at the differences of surface photochemistry afforded by the GaN { 0001 } and { 000 1 } polar surfaces, we correlated the relationship between the surface structure and photoelectrochemical performance on the different polar facets. The photoelectrochemical measurements clearly revealed that the Ga-polar surface had a more negative onset potential relative to the N-polar surface due to the much negative flat-band potential. At more positive applied voltages, however, the N-polar surface yielded much higher photocurrent with conversion efficiency of 0.61% compared to that of 0.55% by using the Ga-polar surface. The reason could be attributed to the variation in the band structure of the different polar facets via Mott-Schottky analyses. Based on this work, understanding the facet effect on photoelectrochemical activity can provide a blueprint for the design of materials in solar hydrogen applications.

© 2013 Optical Society of America

OCIS Codes
(160.6000) Materials : Semiconductor materials
(260.5130) Physical optics : Photochemistry
(350.6050) Other areas of optics : Solar energy

ToC Category:
Solar Fuel

History
Original Manuscript: May 8, 2013
Revised Manuscript: September 14, 2013
Manuscript Accepted: October 10, 2013
Published: November 12, 2013

Citation
Yan-Gu Lin, Yu-Kuei Hsu, Antonio M. Basilio, Yit-Tsong Chen, Kuei-Hsien Chen, and Li-Chyong Chen, "Photoelectrochemical activity on Ga-polar and N-polar GaN surfaces for energy conversion," Opt. Express 22, A21-A27 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-S1-A21


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. G. Lin, Y. K. Hsu, Y. C. Chen, L. C. Chen, S. Y. Chen, and K. H. Chen, “Visible-light-driven photocatalytic carbon-doped porous ZnO nanoarchitectures for solar water-splitting,” Nanoscale4(20), 6515–6519 (2012). [CrossRef] [PubMed]
  2. Y. G. Lin, Y. K. Hsu, Y. C. Chen, S. B. Wang, J. T. Miller, L. C. Chen, and K. H. Chen, “Plasmonic Ag@Ag3(PO4)1−x nanoparticle photosensitized ZnO nanorod-array photoanodes for water oxidation,” Energy Environ. Sci.5(10), 8917–8922 (2012). [CrossRef]
  3. H. Kato, K. Asakura, and A. Kudo, “Highly efficient water splitting into H2 and O2 over Lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure,” J. Am. Chem. Soc.125(10), 3082–3089 (2003). [CrossRef] [PubMed]
  4. K. Domen, J. N. Kondo, M. Hara, and T. Takata, “Photo- and mechano-catalytic overall water splitting reactions to form hydrogen and oxygen on heterogeneous catalysts,” Bull. Chem. Soc. Jpn.73(6), 1307–1331 (2000). [CrossRef]
  5. H. Kadowaki, J. Sato, H. Kobayashi, N. Saito, H. Nishiyama, Y. Simodaira, and Y. Inoue, “Photocatalytic activity of the RuO2-dispersed composite p-block metal oxide LiInGeO4 with d10-d10 configuration for water decomposition,” J. Phys. Chem. B109(48), 22995–23000 (2005). [CrossRef] [PubMed]
  6. K. Maeda, K. Teramura, D. Lu, T. Takata, N. Saito, Y. Inoue, and K. Domen, “Photocatalyst releasing hydrogen from water,” Nature440(7082), 295 (2006). [CrossRef] [PubMed]
  7. D. Wang, A. Pierre, M. G. Kibria, K. Cui, X. Han, K. H. Bevan, H. Guo, S. Paradis, A. R. Hakima, and Z. Mi, “Wafer-level photocatalytic water splitting on GaN nanowire arrays grown by molecular beam epitaxy,” Nano Lett.11(6), 2353–2357 (2011). [CrossRef] [PubMed]
  8. S. Y. Liu, J. K. Sheu, Y. C. Lin, S. J. Tu, F. W. Huang, M. L. Lee, and W. C. Lai, “Mn-doped GaN as photoelectrodes for the photoelectrolysis of water under visible light,” Opt. Express20(S5Suppl 5), A678–A683 (2012). [CrossRef] [PubMed]
  9. H. S. Jung, Y. J. Hong, Y. Li, J. Cho, Y. J. Kim, and G. C. Yi, “Photocatalysis using GaN nanowires,” ACS Nano2(4), 637–642 (2008). [CrossRef] [PubMed]
  10. D. Zhuang and J. H. Edgar, “Wet etching of GaN, AlN, and SiC: a review,” Mater. Sci. Eng. Rep.48(1), 1–46 (2005). [CrossRef]
  11. J. D. Beach, R. T. Collins, and J. A. Turner, “Band-edge potentials of n-type and p-type GaN,” J. Electrochem. Soc.150(7), A899–A904 (2003). [CrossRef]
  12. X. Shen, Y. A. Small, J. Wang, P. B. Allen, M. V. Fernandez-Serra, M. S. Hybertsen, and J. T. Muckerman, “Photocatalytic water oxidation at the GaN (101̅0)−water interface,” J. Phys. Chem. C114(32), 13695–13704 (2010). [CrossRef]
  13. Y. K. Hsu, Y. G. Lin, and Y. C. Chen, “Polarity-dependent photoelectrochemical activity in ZnO nanostructures for solar water splitting,” Electrochem. Commun.13(12), 1383–1386 (2011). [CrossRef]
  14. K. Fujii, Y. Iwaki, H. Masui, T. J. Baker, M. Iza, H. Sato, J. Kaeding, T. Yao, J. S. Speck, S. P. Denbaars, S. Nakamura, and K. Ohkawa, “Photoelectrochemical Properties of Nonpolar and Semipolar GaN,” Jpn. J. Appl. Phys.46(10A), 6573–6578 (2007). [CrossRef]
  15. M. Stutzmann, O. Ambache, M. Eickhoff, U. Karrer, A. L. Pimenta, R. Neuberger, J. Schalwig, R. Dimitrov, P. J. Schuck, and R. D. Grober, “Playing with polarity,” Phys. Status Solidi228(2), 505–512 (2001). [CrossRef]
  16. D. K. Zhong, J. W. Sun, H. Inumaru, and D. R. Gamelin, “Solar water oxidation by composite catalyst/α-Fe2O3 photoanodes,” J. Am. Chem. Soc.131(17), 6086–6087 (2009). [CrossRef] [PubMed]
  17. M. Ono, K. Fujii, T. Ito, Y. Iwaki, A. Hirako, T. Yao, and K. Ohkawa, “Photoelectrochemical reaction and H2 generation at zero bias optimized by carrier concentration of n-type GaN,” J. Chem. Phys.126(5), 054708 (2007). [CrossRef] [PubMed]
  18. I. M. Huygens, A. Theuwis, W. P. Gomes, and K. Strubbe, “Photoelectrochemical reactions at the n-GaN electrode in 1 M H2SO4 and in acidic solutions containing Cl− ions,” Phys. Chem. Chem. Phys.4(11), 2301–2306 (2002). [CrossRef]
  19. B. J. Rodriquez, W. C. Yang, R. J. Nemanich, and A. Gruverman, “Scanning probe investigation of surface charge and surface potential of GaN-based heterostructures,” Appl. Phys. Lett.86(11), 112115 (2005). [CrossRef]
  20. R. Calarco, M. Marso, T. Richter, A. I. Aykanat, R. Meijers, A. V D Hart, T. Stoica, and H. Lüth, “Size-dependent Photoconductivity in MBE-Grown GaN-Nanowires,” Nano Lett.5(5), 981–984 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited