OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 22, Iss. S1 — Jan. 13, 2014
  • pp: A35–A43

Monte Carlo study of PbSe quantum dots as the fluorescent material in luminescent solar concentrators

S. R. Wilton, M. R. Fetterman, J. J. Low, Guanjun You, Zhenyu Jiang, and Jian Xu  »View Author Affiliations


Optics Express, Vol. 22, Issue S1, pp. A35-A43 (2014)
http://dx.doi.org/10.1364/OE.22.000A35


View Full Text Article

Enhanced HTML    Acrobat PDF (993 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, Monte Carlo simulations were performed to determine the potential efficiencies of luminescent solar concentrator (LSC) systems using PbSe quantum dots (QDs) as the active fluorescent material. The simulation results suggest that PbSe QD LSCs display good absorption characteristics, but yield limited LSC power conversion efficiency due to self-absorption and down-conversion loss. It is proposed that the self-absorption loss can be reduced by utilizing Förster resonance energy transfer between two different sizes of PbSe QDs, yielding pronounced improvement in the optical efficiency of LSCs.

© 2013 Optical Society of America

OCIS Codes
(220.1770) Optical design and fabrication : Concentrators
(350.6050) Other areas of optics : Solar energy
(160.4236) Materials : Nanomaterials

ToC Category:
Fluorescent and Luminescent Materials

History
Original Manuscript: May 8, 2013
Revised Manuscript: July 1, 2013
Manuscript Accepted: July 5, 2013
Published: November 25, 2013

Citation
S. R. Wilton, M. R. Fetterman, J. J. Low, Guanjun You, Zhenyu Jiang, and Jian Xu, "Monte Carlo study of PbSe quantum dots as the fluorescent material in luminescent solar concentrators," Opt. Express 22, A35-A43 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-S1-A35


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. H. Weber and J. Lambe, “Luminescent greenhouse collector for solar radiation,” Appl. Opt.15(10), 2299–2300 (1976). [CrossRef] [PubMed]
  2. A. Goetzberger and W. Greubel, “Solar energy conversion with fluorescent collectors,” Appl. Phys. (Berl.)14(2), 123–139 (1977). [CrossRef]
  3. A. F. Mansour, M. G. El-Shaarawy, S. M. El-Bashir, M. K. El-Mansy, and M. Hammam, “A qualitative study and field performance for a fluorescent solar collector,” Polym. Test.21(3), 277–281 (2002). [CrossRef]
  4. A. F. Mansour, H. M. A. Killa, S. Abd El-Wanees, and M. Y. El-Sayed, “Laser dyes doped with poly(ST-Co-MMA) as fluorescent solar collectors and their field performance,” Polym. Test.24(4), 519–525 (2005). [CrossRef]
  5. K. Barnham, J. L. Marques, J. Hassard, and P. O’Brien, “Quantum-dot concentrator and thermodynamic model for the global redshift,” Appl. Phys. Lett.76(9), 1197–1199 (2000). [CrossRef]
  6. V. Sholin, J. D. Olson, and S. A. Carter, “Semiconducting polymers and quantum dots in luminescent solar concentrators for solar energy harvesting,” J. Appl. Phys.101(12), 123114 (2007). [CrossRef]
  7. S. J. Gallagher, B. Norton, and P. C. Eames, “Quantum dot solar concentrators: Electrical conversion efficiencies and comparative concentrating factors of fabricated devices,” Sol. Energy81(6), 813–821 (2007). [CrossRef]
  8. M. G. Hyldahl, S. T. Baileya, and B. P. Wittmershaus, “Photo-stability and performance of CdSe/ZnS quantum dots in luminescent solar concentrators,” Sol. Energy83(4), 566–573 (2009). [CrossRef]
  9. G. V. Shcherbatyuk, R. H. Inman, C. Wang, R. Winston, and S. Ghosh, “Viability of using near infrared PbS quantum dots as active materials in luminescent solar concentrators,” Appl. Phys. Lett.96(19), 191901 (2010). [CrossRef]
  10. A. J. Chatten, K. W. J. Barnham, B. F. Buxton, N. J. Ekins-Daukes, and M. A. Malik, “A new approach to modelling quantum dot concentrators,” Sol. Energy Mater. Sol. Cells75(3–4), 363–371 (2003). [CrossRef]
  11. J. Van der Heide, N. E. Posthuma, G. Flamand, W. Geens, and J. Poortmans, “Development of low‐cost thermophotovoltaic cells using germanium substrates,” AIP Conf. Proc.890, 129–138 (2007). [CrossRef]
  12. M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science321(5886), 226–228 (2008). [CrossRef] [PubMed]
  13. W. W. Yu, J. C. Falkner, B. S. Shih, and V. L. Colvin, “Preparation and characterization of monodisperse PbSe semiconductor nanocrystals in a noncoordinating solvent,” Chem. Mater.16(17), 3318–3322 (2004). [CrossRef]
  14. Reference Solar Spectral Irradiance: Air Mass 1.5,” National Renewable Energy Laboratory, http://rredc.nrel.gov/solar/spectra/am1.5/ .
  15. B. C. Rowan, L. R. Wilson, and B. S. Richards, “Advanced material concepts for luminescent solar concentrators,” IEEE J. Sel. Top. Quantum Electron.14(5), 1312–1322 (2008). [CrossRef]
  16. M. G. Debije, J. Teunissen, M. J. Kastelijn, P. P. C. Verbunt, and C. W. M. Bastiaansen, “The effect of a scattering layer on the edge output of a luminescent solar concentrator,” Sol. Energy Mater. Sol. Cells93(8), 1345–1350 (2009). [CrossRef]
  17. J. S. Batchelder, A. H. Zewail, and T. Cole, “Luminescent solar concentrators. 2: Experimental and theoretical analysis of their possible efficiencies,” Appl. Opt.20(21), 3733–3754 (1981). [CrossRef] [PubMed]
  18. H. Du, C. Chen, R. Krishnan, T. D. Krauss, J. M. Harbold, F. W. Wise, M. G. Thomas, and J. Silcox, “Optical properties of colloidal PbSe nanocrystals,” Nano Lett.2(11), 1321–1324 (2002). [CrossRef]
  19. O. E. Semonin, J. C. Johnson, J. M. Luther, A. G. Midgett, A. J. Nozik, and M. C. Beard, “Absolute photoluminescence quantum yields of IR-26 dye, PbS, and PbSe quantum dots,” J. Phys. Chem. Lett.1(16), 2445–2450 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited