OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 22, Iss. S1 — Jan. 13, 2014
  • pp: A68–A79

Investigation of optical absorptance of one-dimensionally periodic silicon gratings as solar absorbers for solar cells

Nghia Nguyen-Huu, Michael Cada, and Jaromír Pištora  »View Author Affiliations

Optics Express, Vol. 22, Issue S1, pp. A68-A79 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2502 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A rigorous design using periodic silicon (Si) gratings as absorbers for solar cells in visible and near-infrared regions is numerically presented. The structure consists of a subwavelength Si grating layer on top of an Si substrate. Ranges of grating dimensions are preliminary considered satisfying simple and feasible fabrication techniques with an aspect ratio defined as the ratio of the grating thickness (d) and the grating lamella width (w), with 0 < d/w < 1.0. The subwavelength grating structure (SGS) is assumed to comprise different lamella widths and slits within each period in order to finely tune the grating profile such that the absorptance is significantly enhanced in the whole wavelength region. The results showed that the compound SGS yields an average absorptance of 0.92 which is 1.5 larger than that of the Si plain and conventional grating structures. It is shown that the absorptance spectrum of the proposed SGS is insensitive to the angle of incidence of the incoming light. The absorptance enhancement is also investigated by computing magnetic field, energy density, and Poynting vector distributions. The results presented in this study show that the proposed method based on nanofabrication techniques provides a simple and promising solution to design solar energy absorbers or other energy harvesting devices.

© 2013 Optical Society of America

OCIS Codes
(040.6040) Detectors : Silicon
(050.2770) Diffraction and gratings : Gratings
(350.6050) Other areas of optics : Solar energy
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Light Trapping for Photovoltaics

Original Manuscript: August 5, 2013
Revised Manuscript: October 22, 2013
Manuscript Accepted: November 25, 2013
Published: December 4, 2013

Nghia Nguyen-Huu, Michael Cada, and Jaromír Pištora, "Investigation of optical absorptance of one-dimensionally periodic silicon gratings as solar absorbers for solar cells," Opt. Express 22, A68-A79 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Sai, Y. Kanamori, and H. Yugami, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett. 82(11), 1685–1687 (2003). [CrossRef]
  2. S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380–382 (2003). [CrossRef]
  3. N. Nguyen-Huu, Y.-B. Chen, and Y.-L. Lo, “Development of a polarization-Insensitive thermophotovoltaic emitter with a binary grating,” Opt. Express 20(6), 5882–5890 (2012). [CrossRef] [PubMed]
  4. H. Sai, Y. Kanamori, K. Hane, and H. Yugami, “Numerical study on spectral properties of tungsten one-dimensional surface-relief gratings for spectrally selective devices,” J. Opt. Soc. Am. A 22(9), 1805–1813 (2005). [CrossRef] [PubMed]
  5. S. E. Han, A. Stein, and D. J. Norris, “Tailoring self-assembled metallic photonic crystals for modified thermal emission,” Phys. Rev. Lett. 99(5), 053906 (2007). [CrossRef] [PubMed]
  6. T. Asano, K. Mochizuki, M. Yamaguchi, M. Chaminda, and S. Noda, “Spectrally selective thermal radiation based on intersubband transitions and photonic crystals,” Opt. Express 17(21), 19190–19203 (2009). [CrossRef] [PubMed]
  7. S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett. 10(3), 1012–1015 (2010). [CrossRef] [PubMed]
  8. N. P. Sergeant, M. Agrawal, and P. Peumans, “High performance solar-selective absorbers using coated sub-wavelength gratings,” Opt. Express 18(6), 5525–5540 (2010). [CrossRef] [PubMed]
  9. N. Nguyen-Huu and Y.-L. Lo, “Control of infrared spectral absorptance with one-dimensional subwavelength gratings,” J. Lightwave Technol. 31(15), 2482–2490 (2013). [CrossRef]
  10. R. Dewan, M. Marinkovic, R. Noriega, S. Phadke, A. Salleo, and D. Knipp, “Light trapping in thin-film silicon solar cells with submicron surface texture,” Opt. Express 17(25), 23058–23065 (2009). [CrossRef] [PubMed]
  11. J. G. Mutitu, S. Shi, C. Chen, T. Creazzo, A. Barnett, C. Honsberg, and D. W. Prather, “Thin film solar cell design based on photonic crystal and diffractive grating structures,” Opt. Express 16(19), 15238–15248 (2008). [CrossRef] [PubMed]
  12. I. Massiot, C. Colin, C. Sauvan, P. Lalanne, P. R. I. Cabarrocas, J.-L. Pelouard, and S. Collin, “Multi-resonant absorption in ultra-thin silicon solar cells with metallic nanowires,” Opt. Express 21(S3Suppl 3), A372–A381 (2013). [CrossRef] [PubMed]
  13. R. Chriki, A. Yanai, J. Shappir, and U. Levy, “Enhanced efficiency of thin film solar cells using a shifted dual grating plasmonic structure,” Opt. Express 21(S3Suppl 3), A382–A391 (2013). [CrossRef] [PubMed]
  14. S. Hava and M. Auslender, “Design and analysis of low-reflection grating microstructures for a solar energy absorber,” Sol. Energ. Mat. Sol. 61(2), 143–151 (2000). [CrossRef]
  15. A. Lin and J. Phillips, “Optimization of random diffraction gratings in thin-film solar cells using genetic algorithms,” Sol. Energ. Mat. Sol. 92(12), 1689–1696 (2008). [CrossRef]
  16. S. B. Mallick, M. Agrawal, and P. Peumans, “Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells,” Opt. Express 18(6), 5691–5706 (2010). [CrossRef] [PubMed]
  17. C. S. Schuster, P. Kowalczewski, E. R. Martins, M. Patrini, M. G. Scullion, M. Liscidini, L. Lewis, C. Reardon, L. C. Andreani, and T. F. Krauss, “Dual gratings for enhanced light trapping in thin-film solar cells by a layer-transfer technique,” Opt. Express 21(S3Suppl 3), A433–A439 (2013). [CrossRef] [PubMed]
  18. A. Bozzola, M. Liscidini, and L. C. Andreani, “Photonic light-trapping versus Lambertian limits in thin film silicon solar cells with 1D and 2D periodic patterns,” Opt. Express 20(S2Suppl 2), A224–A244 (2012). [CrossRef] [PubMed]
  19. J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010). [CrossRef] [PubMed]
  20. E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010). [CrossRef] [PubMed]
  21. J. Kim, A. J. Hong, J.-W. Nah, B. Shin, F. M. Ross, and D. K. Sadana, “Three-dimensional a-Si:H solar cells on glass nanocone arrays patterned by self-assembled Sn nanospheres,” ACS Nano 6(1), 265–271 (2012). [CrossRef] [PubMed]
  22. W.-C. Tan, J. R. Sambles, and T. Preist, “Double-period zero-order metal gratings as effective selective absorbers,” Phys. Rev. B 61(19), 13177–13182 (2000). [CrossRef]
  23. T. Khaleque, H. G. Svavarsson, and R. Magnusson, “Fabrication of resonant patterns using thermal nano-imprint lithography for thin-film photovoltaic applications,” Opt. Express 21(S4Suppl 4), A631–A641 (2013). [CrossRef] [PubMed]
  24. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999). [CrossRef]
  25. F. Garcia-Vidal and L. Martin-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B 66(15), 155412 (2002). [CrossRef]
  26. A. Hessel and A. A. Oliner, “A new theory of Wood's anomalies on optical gratings,” Appl. Opt. 4(10), 1275–1297 (1965). [CrossRef]
  27. R. C. McPhedran and D. Maystre, “A detailed theoretical study of the anomalies of a sinusoidal diffraction grating,” Opt. Acta (Lond.) 21(5), 413–421 (1974). [CrossRef]
  28. T. Weiss, N. A. Gippius, G. Granet, S. G. Tikhodeev, R. Taubert, L. Fu, H. Schweizer, and H. Giessen, “Strong resonant mode coupling of Fabry–Perot and grating resonances in stacked two-layer systems,” Photon. Nanostructures 9(4), 390–397 (2011). [CrossRef]
  29. T. Li, J. Q. Li, F. M. Wang, Q. J. Wang, H. Liu, S. N. Zhu, and Y. Y. Zhu, “Exploring magnetic plasmon polaritons in optical transmission through hole arrays perforated in trilayer structures,” Appl. Phys. Lett. 90(25), 251112 (2007). [CrossRef]
  30. I. Botten, M. Craig, R. McPhedran, J. Adams, and J. Andrewartha, “The dielectric lamellar diffraction grating,” J. Mod. Opt. 28, 413–428 (1981).
  31. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12(5), 1068–1076 (1995). [CrossRef]
  32. L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13(9), 1870–1876 (1996). [CrossRef]
  33. P. Lalanne and G. M. Morris, “Highly improved convergence of the coupled-wave method for TM polarization,” J. Opt. Soc. Am. A 13(4), 779–784 (1996). [CrossRef]
  34. M. A. Green, “Self-consistent optical parameters of intrinsic silicon at 300K including temperature coefficients,” Sol. Energ. Mat. Sol. 92(11), 1305–1310 (2008). [CrossRef]
  35. American Society for Testing and Materials, “ASTM G173-03 reference spectra,” (2013), http://rredc.nrel.gov/solar/spectra/am1.5/ASTMG173/ASTMG173.html .
  36. Z. M. Zhang, Nano/Microscale Heat Transfer (McGraw-Hill, 2007).
  37. A. A. Tseng, K. Chen, C. D. Chen, and K. J. Ma, “Electron beam lithography in nanoscale fabrication: recent development,” IEEE Trans. Electron. Packag. Manuf. 26(2), 141–149 (2003). [CrossRef]
  38. M. Shinji and O. Yukinori, “Focused ion beam applications to solid state devices,” Nanotechnology 7(3), 247–258 (1996). [CrossRef]
  39. L. J. Guo, “Nanoimprint lithography: methods and material requirements,” Adv. Mater. 19(4), 495–513 (2007). [CrossRef]
  40. D. C. Skigin and R. A. Depine, “Transmission resonances of metallic compound gratings with subwavelength slits,” Phys. Rev. Lett. 95(21), 217402 (2005). [CrossRef] [PubMed]
  41. D. Xiang, L.-L. Wang, X.-F. Li, L. Wang, X. Zhai, Z.-H. Liu, and W.-W. Zhao, “Transmission resonances of compound metallic gratings with two subwavelength slits in each period,” Opt. Express 19(3), 2187–2192 (2011). [CrossRef] [PubMed]
  42. N. Nguyen-Huu and Y.-L. Lo, “Tailoring the optical transmission spectra of double-layered compound metallic gratings,” IEEE Photon. J 5(1), 2700108 (2013). [CrossRef]
  43. Y. J. Shin, C. Pina-Hernandez, Y.-K. Wu, J. G. Ok, and L. J. Guo, “Facile route of flexible wire grid polarizer fabrication by angled-evaporations of aluminum on two sidewalls of an imprinted nanograting,” Nanotechnology 23(34), 344018 (2012). [CrossRef] [PubMed]
  44. C.-L. Wu, C.-K. Sung, P.-H. Yao, and C.-H. Chen, “Sub-15 nm linewidth gratings using roll-to-roll nanoimprinting and plasma trimming to fabricate flexible wire-grid polarizers with low colour shift,” Nanotechnology 24(26), 265301 (2013). [CrossRef] [PubMed]
  45. B. Maes, J. Petráček, S. Burger, P. Kwiecien, J. Luksch, and I. Richter, “Simulations of high-Q optical nanocavities with a gradual 1D bandgap,” Opt. Express 21(6), 6794–6806 (2013). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited