OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 22, Iss. S1 — Jan. 13, 2014
  • pp: A80–A89

Photovoltaic effect in multiphase Bi-Mn-O thin films

J. P. Chakrabartty, R. Nechache, C. Harnagea, and F. Rosei  »View Author Affiliations


Optics Express, Vol. 22, Issue S1, pp. A80-A89 (2014)
http://dx.doi.org/10.1364/OE.22.000A80


View Full Text Article

Enhanced HTML    Acrobat PDF (1611 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report an external solar power conversion efficiency of ~0.1% in Bi-Mn-O thin films grown onto (111) oriented Niobium doped SrTiO3 (STO) single crystal substrate by pulse laser deposition (PLD). The films contain BiMnO3 (BMO) and Mn3O4 (MO) phases, which both grow epitaxially. The growth conditions were tailored to obtain films with different Bi/Mn ratios. The films were subsequently illuminated under a sun simulator (AM 1.5 G). We find that the Bi/Mn ratio in the film affects the magnitude of the photo induced voltage and photocurrent and therefore the photovoltaic conversion efficiency. Specifically, a higher Bi/Mn ratio (towards unity) in the film increases the power conversion efficiency. This effect is described in terms of a more favorable energy band alignment of the film/substrate hetero-structure junction, which controls photo carrier separation.

© 2013 Optical Society of America

OCIS Codes
(040.5350) Detectors : Photovoltaic
(160.2260) Materials : Ferroelectrics
(240.0310) Optics at surfaces : Thin films
(310.5448) Thin films : Polarization, other optical properties
(310.6845) Thin films : Thin film devices and applications

ToC Category:
Photovoltaics

History
Original Manuscript: August 2, 2013
Revised Manuscript: November 25, 2013
Manuscript Accepted: November 25, 2013
Published: December 5, 2013

Citation
J. P. Chakrabartty, R. Nechache, C. Harnagea, and F. Rosei, "Photovoltaic effect in multiphase Bi-Mn-O thin films," Opt. Express 22, A80-A89 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-S1-A80


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. M. Sze, Semiconductor Devices: Physics and Technology (Wiley, 2002).
  2. F. Zheng, J. Xu, L. Fang, M. R. Shen, and Z. L. Wu, “Separation of the Schottky barrier and polarization effects on the photocurrent of Pt sandwiched Pb(Zr0.20Ti0.80)O3 films,” Appl. Phys. Lett.93(17), 172101 (2008). [CrossRef]
  3. W. Ji, K. Yao, and Y. C. Liang, “Bulk photovoltaic effect at visible wavelength in epitaxial ferroelectric BiFeO3 thin films,” Adv. Mater.22(15), 1763–1766 (2010). [CrossRef] [PubMed]
  4. Z. Luo, J. H. Hao, and J. Gao, “Rectifying characteristics and transport behavior of SrTiO3−δ(110)/p-Si (100) heterojunctions,” Appl. Phys. Lett.91(6), 062105 (2007). [CrossRef]
  5. Y. S. Xiao, X. P. Zhang, and Y. G. Zhao, “Negative differential resistance inLa0.67Ca0.33MnO3−δ/Nb–SrTiO3 p-n junction,” Appl. Phys. Lett.90(1), 013509 (2007). [CrossRef]
  6. S. M. Guo, Y. G. Zhao, C. M. Xiong, and P. L. Lang, “Rectifying I-V characteristic of LiNbO3/Nb-dopedSrTiO3 heterojunction,” Appl. Phys. Lett.89(22), 223506 (2006). [CrossRef]
  7. M. Glass, D. Von der Linde, and T. J. Negran, “High‐voltage bulk photovoltaic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett.25(4), 233–235 (1974). [CrossRef]
  8. Y. S. Yang, S. L. Lee, S. Yi, B. G. Chae, S. H. Lee, H. J. Joo, and M. S. Jang, “Schottky barrier effects in the photocurrent of sol–gel derived lead zirconate titanate thin film capacitors,” Appl. Phys. Lett.76(6), 774 (2000). [CrossRef]
  9. L. Pintilie, I. Vrejoiu, G. Le Rhun, and M. Alexe, “Short-circuit photocurrent in epitaxial lead zirconate-titanate thin films,” J. Appl. Phys.101(6), 064109 (2007). [CrossRef]
  10. S. Y. Yang, L. W. Martin, S. J. Byrnes, T. E. Conry, S. R. Basu, D. Paran, L. Reichertz, J. Ihlefeld, C. Adamo, A. Melville, Y. Chu, C. Yang, J. L. Musfeldt, D. G. Schlom, J. W. Ager, and R. Ramesh, “Photovoltaic effects in BiFeO3,” Appl. Phys. Lett.95(6), 062909 (2009). [CrossRef]
  11. H. Schmid, “Multi-ferroic magnetoelectrics,” Ferroelectrics162(1), 317–338 (1994). [CrossRef]
  12. H. R. Condit and F. Grum, “Spectral energy distribution of daylight,” J. Opt. Soc. Am.54(7), 937–944 (1964). [CrossRef]
  13. S. Y. Yang, J. Seidel, S. J. Byrnes, P. Shafer, C.-H. Yang, M. D. Rossell, P. Yu, Y. H. Chu, J. F. Scott, J. W. Ager, L. W. Martin, and R. Ramesh, “Above-bandgap voltages from ferroelectric photovoltaic devices,” Nat. Nanotechnol.5(2), 143–147 (2010). [CrossRef] [PubMed]
  14. R. Guo, L. You, L. Chen, D. Wu, and J. Wang, “Photovoltaic property of BiFeO3 thin films with 109° domains,” Appl. Phys. Lett.99(12), 122902 (2011). [CrossRef]
  15. N. A. Hill and K. M. Rabe, “First-principles investigation of ferromagnetism and ferroelectricity in bismuth manganite,” Phys. Rev. B59(13), 8759–8769 (1999). [CrossRef]
  16. J. Y. Son and Y. H. Shin, “Multiferroic BiMnO3 thin films with double SrTiO3 buffer layers,” Appl. Phys. Lett.93(6), 062902 (2008). [CrossRef]
  17. W. Eerenstein, F. D. Morrison, J. F. Scott, and N. D. Mathur, “Growth of highly resistive BiMnO3 films,” Appl. Phys. Lett.87(10), 101906 (2005). [CrossRef]
  18. H. Chiba, T. Atou, and Y. Syono, “Magnetic and electrical properties of Bi1−xSrxMnO3: hole-doping effect on ferromagnetic perovskite BiMnO3,” J. Solid State Chem.132(1), 139–143 (1997). [CrossRef]
  19. A. F. Moreira dos Santos, A. K. Cheetham, W. Tian, X. Pan, Y. Jia, N. J. Murphy, J. Lettieri, and D. G. Schlom, “Epitaxial growth and properties of metastable BiMnO3 thin films,” Appl. Phys. Lett.84(1), 91–93 (2004). [CrossRef]
  20. H. Béa, M. Bibes, A. Barthélémy, K. Bouzehouane, E. Jacquet, A. Khodan, J.-P. Contour, S. Fusil, F. Wyczisk, A. Forget, D. Lebeugle, D. Colson, and M. Viret, “Influence of parasitic phases on the properties of BiFeO3 epitaxial thin films,” Appl. Phys. Lett.87(7), 072508 (2005). [CrossRef]
  21. R. Nechache, C. Harnagea, L.-P. Carignan, O. Gautreau, L. Pintilie, M. P. Singh, D. Menard, P. Fournier, M. Alexe, and A. Pignolet, “Epitaxial thin films of the multiferroic double perovskite Bi2FeCrO6 grown on (100)-oriented SrTiO3 substrates: growth, characterization, and optimization,” J. Appl. Phys.105(6), 061621 (2009). [CrossRef]
  22. S. Fujino, M. Murakami, S. H. Lim, L. G. Salamanca-Riba, M. Wuttig, and I. Takeuchi, “Multiphase growth in Bi-Mn-O thin films,” J. Appl. Phys.101(1), 013903 (2007). [CrossRef]
  23. A. Sharan, J. Lettieri, Y. Jia, W. Tian, X. Pan, D. G. Schlom, and V. Gopalan, “Bismuth manganite: A multiferroic with a large nonlinear optical response,” Phys. Rev. B69(21), 214109 (2004). [CrossRef]
  24. J. F. Scott, “Ferroelectrics go bananas,” J. Phys. Condens. Matter20(2), 021001 (2008). [CrossRef]
  25. L. Pintilie and M. Alexe, “Ferroelectric-like hysteresis loop in nonferroelectric systems,” Appl. Phys. Lett.87(11), 112903 (2005). [CrossRef]
  26. H. Kliem and B. Martin, “Pseudo-ferroelectric properties by space charge polarization,” J. Phys. Condens. Matter20(32), 321001 (2008). [CrossRef]
  27. A. Loidl, S. Krohns, J. Hemberger, and P. Lunkenheimer, “Bananas go paraelectric,” J. Phys. Condens. Matter20(19), 191001 (2008). [CrossRef]
  28. X. S. Xu, J. F. Ihlefeld, J. H. Lee, O. K. Ezekoye, E. Vlahos, R. Ramesh, V. Gopalan, X. Q. Pan, D. G. Schlom, and J. L. Musfeldt, “Tunable band gap in Bi(Fe1−xMnx)O3 films,” Appl. Phys. Lett.96(19), 192901 (2010). [CrossRef]
  29. D. P. Dubal, D. S. Dhawale, R. R. Salunkhe, S. M. Pawar, V. J. Fulari, and C. D. Lokhande, “A novel chemical synthesis of interlocked cubes of hausmannite Mn3O4 thin films for supercapacitor application,” J. Alloy. Comp.484(1), 218–221 (2009). [CrossRef]
  30. H. Y. Xu, S. L. Xu, X. D. Li, H. Wang, and H. Yan, “Chemical bath deposition of hausmannite Mn3O4 thin films,” Appl. Surf. Sci.252(12), 4091–4096 (2006). [CrossRef]
  31. M. A. Quijada, J. R. Simpson, L. Vasiliu-Doloc, J. W. Lynn, H. D. Drew, Y. M. Mukovskii, and S. G. Karabashev, “Temperature dependence of low-lying electronic excitations of LaMnO3,” Phys. Rev. B64(22), 224426 (2001). [CrossRef]
  32. N. N. Kovaleva, A. V. Boris, C. Bernhard, A. Kulakov, A. Pimenov, A. M. Balbashov, G. Khaliullin, and B. Keimer, “Spin-Controlled Mott-Hubbard bands in LaMnO3 Probed by Optical Ellipsometry,” Phys. Rev. Lett.93(14), 147204 (2004). [CrossRef] [PubMed]
  33. A. S. Moskvin, A. A. Makhnev, L. V. Nomerovannaya, N. N. Loshkareva, and A. M. Balbashov, “Interplay of p-d and d-d charge transfer transitions in rare-earth perovskite manganites,” Phys. Rev. B82(3), 035106 (2010). [CrossRef]
  34. J. Wei, D. Xue, C. Wu, and Z. Li, “Enhanced ferromagnetic properties of multiferroic Bi1−xSrxMn0.2Fe0.8O3 synthesized by sol–gel process,” J. Alloy. Comp.453(1–2), 20–23 (2008). [CrossRef]
  35. C. F. Chung, J. P. Lin, and J. M. Wu, “Influence of Mn and Nb dopants on electric properties of chemical-solution-deposited BiFeO3 films,” Appl. Phys. Lett.88(24), 242909 (2006). [CrossRef]
  36. V. K. Yarmarkin, B. M. Gol’tsman, M. M. Kazanin, and V. V. Lemanov, “Barrier Photovoltaic Effects in PZT Ferroelectric Thin Films,” Phys. Solid State42(3), 522–527 (2000). [CrossRef]
  37. A. Matsumura, Y. Kamaike, T. Horiuchi, M. Shimuzi, T. Shiosaki, and K. Matsushige, “Thermal Effects in Properties of Photovoltaic Currents of Pb(Zr, Ti)O3 Thin Films,” Jpn. J. Appl. Phys.34(9B), 5258–5262 (1995). [CrossRef]
  38. H. Yang, H. M. Luo, H. Wang, I. O. Usov, N. A. Suvorova, M. Jain, D. M. Feldmann, P. C. Dowden, R. F. DePaula, and Q. X. Jia, “Rectifying current-voltage characteristics of BiFeO3/Nb-doped SrTiO3 heterojunction,” Appl. Phys. Lett.92(10), 102113 (2008). [CrossRef]
  39. Z. Yue, K. Zhao, S. Zhao, Z. Lu, X. Li, H. Ni, and A. Wang, “Thickness-dependent photovoltaic effects in miscut Nb-doped SrTiO3 single crystals,” J. Phys. D Appl. Phys.43(1), 015104 (2010). [CrossRef]
  40. Y. Muraoka, T. Muramatsu, J. Yamaura, and Z. Hiroi, “Photogenerated hole carrier injection to YBa2Cu3O7−x in an oxide heterostructure,” Appl. Phys. Lett.85(14), 2950–2952 (2004). [CrossRef]
  41. F. Horikiri, T. Ichikawa, A. Kaimai, H. Matsumoto, K. Yashiro, T. Kawada, and J. Mizusaki, “High temperature photovoltaic effect at Nb doped SrTiO3/electrode,” http://www.electrochem.org/dl/ma/206/pdfs/1783.pdf
  42. Y. J. Hwang, A. Boukai, and P. Yang, “High density n-Si/n-TiO2 core/shell nanowire arrays with enhanced photoactivity,” Nano Lett.9(1), 410–415 (2009). [CrossRef] [PubMed]
  43. Y. Watanabe, “Electrical transport through Pb(Zr,Ti)O3 p-n and p-p heterostructures modulated by bound charges at a ferroelectric surface: ferroelectric p-n diode,” Phys. Rev. B59(17), 11257–11266 (1999). [CrossRef]
  44. R. Meyer and R. Waser, “Hysteretic resistance concepts in ferroelectric thin films,” J. Appl. Phys.100(5), 051611 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited