OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 22, Iss. S2 — Mar. 10, 2014
  • pp: A259–A267

Light trapping in a polymer solar cell by tailored quantum dot emission

Yunlu Xu and Jeremy N. Munday  »View Author Affiliations

Optics Express, Vol. 22, Issue S2, pp. A259-A267 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1533 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a polymer photovoltaic device with a new scattering mechanism based on photon absorption and re-emission in a quantum dot layer. A matrix of aluminum nanorods with optimized radius and period are used to modify the coupling of light emitted from the quantum dots into the polymer layer. Our analysis shows that this architecture is capable of increasing the absorption of an ordinary polymer photovoltaic device by 28%.

© 2014 Optical Society of America

OCIS Codes
(040.5350) Detectors : Photovoltaic
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Light Trapping for Photovoltaics

Original Manuscript: September 30, 2013
Revised Manuscript: December 28, 2013
Manuscript Accepted: January 8, 2014
Published: January 23, 2014

Yunlu Xu and Jeremy N. Munday, "Light trapping in a polymer solar cell by tailored quantum dot emission," Opt. Express 22, A259-A267 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. J. Brabec, “Organic photovoltaics: technology and market,” Sol. Energy Mater. Sol. Cells83(2–3), 273–292 (2004). [CrossRef]
  2. F. C. Krebs, S. A. Gevorgyan, and J. Alstrup, “A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies,” J. Mater. Chem.19(30), 5442 (2009). [CrossRef]
  3. F. C. Krebs, T. Tromholt, and M. Jørgensen, “Upscaling of polymer solar cell fabrication using full roll-to-roll processing,” Nanoscale2(6), 873–886 (2010). [CrossRef] [PubMed]
  4. A. J. Medford, M. R. Lilliedal, M. Jørgensen, D. Aarø, H. Pakalski, J. Fyenbo, and F. C. Krebs, “Grid-connected polymer solar panels: initial considerations of cost, lifetime, and practicality,” Opt. Express18(S3Suppl 3), A272–A285 (2010). [CrossRef] [PubMed]
  5. H. Zhou, Y. Zhang, J. Seifter, S. D. Collins, C. Luo, G. C. Bazan, T.-Q. Nguyen, and A. J. Heeger, “High-Efficiency Polymer Solar Cells Enhanced by Solvent Treatment,” Adv. Mater.25(11), 1646–1652 (2013). [CrossRef] [PubMed]
  6. J. You, L. Dou, Z. Hong, G. Li, and Y. Yang, “Recent trends in polymer tandem solar cell research,” Prog. Polym. Sci.38(12), 1909–1928 (2013). [CrossRef]
  7. L. Dou, J. You, J. Yang, C.-C. Chen, Y. He, S. Murase, T. Moriarty, K. Emery, G. Li, and Y. Yang, “Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer,” Nat. Photonics6(3), 180–185 (2012). [CrossRef]
  8. O. Hagemann, M. Bjerring, N. C. Nielsen, and F. C. Krebs, “All solution processed tandem polymer solar cells based on thermocleavable materials,” Sol. Energy Mater. Sol. Cells92(11), 1327–1335 (2008). [CrossRef]
  9. J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.-C. Chen, J. Gao, G. Li, and Y. Yang, “A polymer tandem solar cell with 10.6% power conversion efficiency,” Nat Commun.4, 1446 (2013). [CrossRef] [PubMed]
  10. W. Li, A. Furlan, K. H. Hendriks, M. M. Wienk, and R. A. J. Janssen, “Efficient Tandem and Triple-Junction Polymer Solar Cells,” J. Am. Chem. Soc.135(15), 5529–5532 (2013). [CrossRef] [PubMed]
  11. J. You, C.-C. Chen, Z. Hong, K. Yoshimura, K. Ohya, R. Xu, S. Ye, J. Gao, G. Li, and Y. Yang, “10.2% Power Conversion Efficiency Polymer Tandem Solar Cells Consisting of Two Identical Sub-Cells,” Adv. Mater.25(29), 3973–3978 (2013). [CrossRef] [PubMed]
  12. A. Luque and S. Hegedus, Handbook of Photovoltaic Science and Engineering. Wiley, 2003.
  13. W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, “Hybrid Nanorod-Polymer Solar Cells,” Science295(5564), 2425–2427 (2002). [CrossRef] [PubMed]
  14. L. Song and A. Uddin, “Design of high efficiency organic solar cell with light trapping,” Opt. Express20(S5Suppl 5), A606–A621 (2012). [CrossRef] [PubMed]
  15. W. E. I. Sha, W. C. H. Choy, Y. Wu, and W. C. Chew, “Optical and electrical study of organic solar cells with a 2D grating anode,” Opt. Express20(3), 2572–2580 (2012). [CrossRef] [PubMed]
  16. S. Y. Chou and W. Ding, “Ultrathin, high-efficiency, broad-band, omni-acceptance, organic solar cells enhanced by plasmonic cavity with subwavelength hole array,” Opt. Express21(S1Suppl 1), A60–A76 (2013). [CrossRef] [PubMed]
  17. H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys.106(7), 073109 (2009). [CrossRef]
  18. I. Kim, D. S. Jeong, T. S. Lee, W. S. Lee, and K.-S. Lee, “Plasmonic nanograting design for inverted polymer solar cells,” Opt. Express20(S5Suppl 5), A729–A739 (2012). [CrossRef] [PubMed]
  19. S. Mokkapati and K. R. Catchpole, “Nanophotonic light trapping in solar cells,” J. Appl. Phys.112(10), 101101 (2012). [CrossRef]
  20. E. Stratakis and E. Kymakis, “Nanoparticle-based plasmonic organic photovoltaic devices,” Mater. Today16(4), 133–146 (2013). [CrossRef]
  21. Q. Gan, F. J. Bartoli, and Z. H. Kafafi, “Plasmonic-Enhanced Organic Photovoltaics: Breaking the 10% Efficiency Barrier,” Adv. Mater.25(17), 2385–2396 (2013). [CrossRef] [PubMed]
  22. Z. Ye, S. Chaudhary, P. Kuang, and K.-M. Ho, “Broadband light absorption enhancement in polymer photovoltaics using metal nanowall gratings as transparent electrodes,” Opt. Express20(11), 12213–12221 (2012). [CrossRef] [PubMed]
  23. K. Q. Le, A. Abass, B. Maes, P. Bienstman, and A. Alù, “Comparing plasmonic and dielectric gratings for absorption enhancement in thin-film organic solar cells,” Opt. Express20(S1), A39–A50 (2012). [CrossRef] [PubMed]
  24. V. E. Ferry, J. N. Munday, and H. A. Atwater, “Design Considerations for Plasmonic Photovoltaics,” Adv. Mater.22(43), 4794–4808 (2010). [CrossRef] [PubMed]
  25. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010). [CrossRef] [PubMed]
  26. B. Yu, S. Goodman, A. Abdelaziz, and D. M. O'Carroll, “Light-management in ultra-thin polythiophene films using plasmonic monopole nanoantennas,” Appl. Phys. Lett.101(15), 151106 (2012). [CrossRef]
  27. A. J. Nozik, “Quantum dot solar cells,” Physica E14, 115–120(2002).
  28. Y.-J. Lee, Y.-C. Yao, M.-T. Tsai, A.-F. Liu, M.-D. Yang, and J.-T. Lai, “Current matching using CdSe quantum dots to enhance the power conversion efficiency of InGaP/GaAs/Ge tandem solar cells,” Opt. Express21(S6), A953–A963 (2013). [CrossRef]
  29. C. Cheng and X. Wang, “A Comparative Study of Spectral Characteristics of CdSe and CdSe/ZnS Quantum Dots” International Symposium on Biophotonics, Nanophotonics and Metamaterials, 2006. Metamaterials, 366–369 (2006). [CrossRef]
  30. The experimental absorption data (A.U.) was obtained from solution and has been converted into absorption (%) using typical k values for bulk.
  31. J. N. Munday and H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett.11(6), 2195–2201 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited