OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 22, Iss. S2 — Mar. 10, 2014
  • pp: A268–A275

Spatio-temporal dynamics behind the shock front from compacted metal nanopowders

Ch. Leela, P. Venkateshwarlu, Raja V. Singh, Pankaj Verma, and P. Prem Kiran  »View Author Affiliations


Optics Express, Vol. 22, Issue S2, pp. A268-A275 (2014)
http://dx.doi.org/10.1364/OE.22.00A268


View Full Text Article

Enhanced HTML    Acrobat PDF (3826 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Laser ablated shock waves from compacted metal nanoenergetic powders of Aluminum (Al), Nickel coated Aluminum (Ni-Al) was characterized using shadowgraphy technique and compared with that from Boron Potassium Nitrate (BKN), Ammonium Perchlorate (AP) and Potassium Bromide (KBr) powders. Ablation is created by focused second harmonic (532 nm, 7 ns) of Nd:YAG laser. Time resolved shadowgraphs of propagating shock front and contact front revealed dynamics and the precise time of energy release of materials under extreme ablative pressures. Among the different compacted materials studied, Al nanopowders have maximum shock velocity and pressure behind the shock front compared to others.

© 2014 Optical Society of America

OCIS Codes
(110.2970) Imaging systems : Image detection systems
(160.0160) Materials : Materials
(100.0118) Image processing : Imaging ultrafast phenomena

ToC Category:
Energy Nanotechnology

History
Original Manuscript: December 3, 2013
Revised Manuscript: January 13, 2014
Manuscript Accepted: January 14, 2014
Published: January 24, 2014

Virtual Issues
Renewable Energy and the Environment (2014) Optics Express

Citation
Ch. Leela, P. Venkateshwarlu, Raja V. Singh, Pankaj Verma, and P. Prem Kiran, "Spatio-temporal dynamics behind the shock front from compacted metal nanopowders," Opt. Express 22, A268-A275 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-S2-A268


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Ulas, G. A. Risha, and K. K. Kuo, “An investigation of the performance of a Boron/Potassium nitrate based pyrotechnic igniter,” Propellants Explosives Pyrotech.31(4), 311–317 (2006). [CrossRef]
  2. Y. S. Kwon, A. A. Gromov, and J. I. Strokova, “Passivation of the surface of Aluminum nanopowders by protective coatings of the different chemical origin,” Appl. Surf. Sci.253(12), 5558–5564 (2007). [CrossRef]
  3. M. A. Zamkov, R. W. Conner, and D. D. Dlott, “Ultrafast chemistry of nanoenergetic materials studied by time-resolved infrared spectroscopy: Aluminum nanoparticles in teflon,” J. Phys. Chem. C111(28), 10278–10284 (2007). [CrossRef]
  4. D. E. Eakins and N. N. Thadhani, “The shock-densifiction behavior of three distinct Ni+Al powder mixtures,” Appl. Phys. Lett.92(11), 111903 (2008). [CrossRef]
  5. S. Roy, N. Jiang, H. U. Stauffer, J. B. Schmidt, W. D. Kulatilaka, T. R. Meyer, C. E. Bunker, and J. R. Gord, “Spatially and temporally resolved temperature and shock-speed measurements behind a laser-induced blast wave of energetic nanoparticles,” J. Appl. Phys.113(18), 184310 (2013). [CrossRef]
  6. N. K. Bourne, “Akrology: materials: physics in extremes,” AIP Conf. Proc.1426, 1331–1334 (2012).
  7. N. K. Bourne, J. C. F. Millett, and G. T. Gray, “On the shock compression of polycrystalline metals,” J. Mater. Sci.44(13), 3319–3343 (2009). [CrossRef]
  8. A. N. Ali, S. F. Son, B. W. Asay, and R. K. Sander, “Importance of the gas phase role to the prediction of energetic material behavior: an experimental study,” J. Appl. Phys.97(6), 063505 (2005). [CrossRef]
  9. R. E. Russo, X. Mao, H. Liu, J. Gonzalez, and S. S. Mao, “Laser ablation in analytical chemistry-a review,” Talanta57(3), 425–451 (2002). [CrossRef] [PubMed]
  10. D. Yarmolich, V. Vekselman, and Y. E. Krasik, “A concept of ferroelectric microparticle propulsion thruster,” Appl. Phys. Lett.92(8), 081504 (2008). [CrossRef]
  11. J. E. Sinko and C. R. Phipps, “Modeling CO2 laser ablation impulse of polymers in vapor and plasma regimes,” Appl. Phys. Lett.95(13), 131105 (2009). [CrossRef]
  12. C. Phipps, M. Birkan, W. Bohn, H. A. Eckel, H. Horisawa, T. Lippert, M. Michaelis, Y. Rezunkov, A. Sasoh, W. Schall, S. Scharring, and J. Sinko, “Review: laser-ablation propulsion,” J. Propul. Power26(4), 609–637 (2010). [CrossRef]
  13. S. L. Vummidi, Y. Aly, M. Schoenitz, and E. L. Dreizin, “Characerization of fine Nickel-coated Aluminum powder as potential fuel additive,” J. Propul. Power26(3), 454–460 (2010). [CrossRef]
  14. S. Siano, G. Pacini, R. Pini, and R. Salimbeni, “Reliability of refractive fringe diagnostics to control plasma-mediated laser ablation,” Opt. Commun.154(5–6), 319–324 (1998). [CrossRef]
  15. Ch. Leela, S. Bagchi, V. R. Kumar, S. P. Tewari, and P. P. Kiran, “Dynamics of laser induced micro-shock waves and hot core plasma in quiescent air,” Laser Particle Beams31(02), 263–272 (2013). [CrossRef]
  16. L. I. Sedov, Similarity and Dimensional Methods in Mechanics (CRC, 1993).
  17. S. H. Jeong, R. Greif, and R. E. Russo, “Propagation of the shock wave generated from Excimer laser heating of Aluminum targets in comparison with ideal blast wave theory,” Appl. Surf. Sci.127–129, 1029–1034 (1998). [CrossRef]
  18. Ya. B. Zel′dovich and Yu. P. Raizer, Physics of Shockwaves and High-Temperature Hydrodynamic Phenomena (Dover, 2002).
  19. P. Verma and R. V. Singh, HEMRL (Personal communication, 2012).
  20. N. Zhang, X. N. Zhu, J. J. Yang, X. L. Wang, and M. W. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of Aluminum,” Phys. Rev. Lett.99(16), 167602 (2007). [CrossRef] [PubMed]
  21. H. L. Brode, “Numerical solutions of spherical blast waves,” J. Appl. Phys.26(6), 766–775 (1955). [CrossRef]
  22. R. A. Freeman, “Variable-energy blast waves,” J. Phys. D Appl. Phys.1(12), 1697–1710 (1968). [CrossRef]
  23. X. Chen, B. M. Bian, Z. H. Shen, J. Lu, and X. W. Ni, “Equations of laser-induced plasma shock wave motion in air,” Microw. Opt. Technol. Lett.38(1), 75–79 (2003). [CrossRef]
  24. B. Wang, K. Komurasaki, T. Yamaguchi, K. Shimamura, and Y. Arakawa, “Energy conversion on a glass-laser-induced blast wave in air,” J. Appl. Phys.108(12), 124911 (2010). [CrossRef]
  25. C. Porneala and D. A. Willis, “Time-resolved dynamics of nanosecond laser-induced phase explosion,” J. Phys. D Appl. Phys.42(15), 155503 (2009). [CrossRef]
  26. D. Batani, H. Stabile, A. Ravasio, G. Lucchini, F. Strati, T. Desai, J. Ullschmied, E. Krousky, J. Skala, L. Juha, B. Kralikova, M. Pfeifer, Ch. Kadlec, T. Mocek, A. Präg, H. Nishimura, and Y. Ochi, “Ablation pressure scaling at short laser wavelength,” Phys. Rev. E Stat. Nonlinear Soft Matter Phys.68(6), 067403 (2003). [CrossRef] [PubMed]
  27. S. Bagchi, P. P. Kiran, K. Yang, A. M. Rao, M. K. Bhuyan, M. Krishnamurthy, and G. R. Kumar, “Bright, low debris, ultrashort hard X-ray table top source using carbon nanotubes,” Phys. Plasmas18(1), 014502 (2011). [CrossRef]
  28. S. Bagchi, P. P. Kiran, M. K. Bhuyan, S. Bose, P. Ayyub, M. Krishnamurthy, and G. R. Kumar, “Hot ion generation from nanostructured surfaces under intense femtosecond irradiation,” Appl. Phys. Lett.90(14), 141502 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited