OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 22, Iss. S2 — Mar. 10, 2014
  • pp: A295–A300

Compound biomimetic structures for efficiency enhancement of Ga0.5In0.5P/GaAs/Ge triple-junction solar cells

Mu-Min Hung, Hau-Vei Han, Chung-Yu Hong, Kuo-Hsuan Hong, Tung-Ting Yang, Peichen Yu, Yu-Rue Wu, Hong-Yih Yeh, and Hong-Cheng Huang  »View Author Affiliations


Optics Express, Vol. 22, Issue S2, pp. A295-A300 (2014)
http://dx.doi.org/10.1364/OE.22.00A295


View Full Text Article

Enhanced HTML    Acrobat PDF (1248 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Biomimetic nanostructures have shown to enhance the optical absorption of Ga0.5In0.5P/GaAs/Ge triple junction solar cells due to excellent antireflective (AR) properties that, however, are highly dependent on their geometric dimensions. In practice, it is challenging to control fabrication conditions which produce nanostructures in ideal periodic arrangements and with tapered side-wall profiles, leading to sacrificed AR properties and solar cell performance. In this work, we introduce compound biomimetic nanostructures created by depositing a layer of silicon dioxide (SiO2) on top of titanium dioxide (TiO2) nanostructures for triple junction solar cells. The device exhibits photogenerated current and power conversion efficiency that are enhanced by ~8.9% and ~6.4%, respectively, after deposition due to their improved antireflection characteristics. We further investigate and verify the optical properties of compound structures via a rigorous coupled wave analysis model. The additional SiO2 layer not only improves the geometric profile, but also serves as a double-layer dielectric coating. It is concluded that the compound biomimetic nanostructures exhibit superior AR properties that are relatively insensitive to fabrication constraints. Therefore, the compound approach can be widely adopted for versatile optoelectronic devices and applications.

© 2014 Optical Society of America

OCIS Codes
(040.5350) Detectors : Photovoltaic
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Subwavelength structures, nanostructures

History
Original Manuscript: October 21, 2013
Revised Manuscript: January 29, 2014
Manuscript Accepted: January 29, 2014
Published: February 5, 2014

Citation
Mu-Min Hung, Hau-Vei Han, Chung-Yu Hong, Kuo-Hsuan Hong, Tung-Ting Yang, Peichen Yu, Yu-Rue Wu, Hong-Yih Yeh, and Hong-Cheng Huang, "Compound biomimetic structures for efficiency enhancement of Ga0.5In0.5P/GaAs/Ge triple-junction solar cells," Opt. Express 22, A295-A300 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-S2-A295


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Yamaguchi, N. Kojima, A. Khan, T. Takamoto, K. Ando, M. Imaizumi, and T. Sumita, “Radiation-resistant and high-efficiency InGaP/InGaAs/Ge 3-junction solar cells,” International Symposium on Compound Semiconductors, 189–190 (2003). [CrossRef]
  2. H. Cotal, C. Fetzer, J. Boisvert, G. Kinsey, R. King, P. Hebert, H. Yoon, and N. Karam, “III-V multijunction solar cells for concentrating photovoltaics,” Energy Environ. Sci.2(2), 174–192 (2009). [CrossRef]
  3. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 41),” Prog. Photovolt. Res. Appl.21(1), 1–11 (2013). [CrossRef]
  4. P. Yu, M. Y. Chiu, C. H. Chang, C. Y. Hong, Y. L. Tsai, H. V. Han, and Y. R. Wu, “Towards high-efficiency multi-junction solar cells with biologically inspired nanosurfaces,” Wiley Online Library, Aug. 2, 2012.
  5. M. Y. Chiu, C. H. Chang, M. A. Tsai, F. Y. Chang, and P. Yu, “Improved optical transmission and current matching of a triple-junction solar cell utilizing sub-wavelength structures,” Opt. Express18(S3Suppl 3), A308–A313 (2010). [CrossRef] [PubMed]
  6. C. G. Bernhard and W. H. Miller, “A corneal nipple pattern in insect compound eyes,” Acta Physiol. Scand.56(3-4), 385–386 (1962). [CrossRef] [PubMed]
  7. S. J. Wilson and M. C. Hutley, “The optical properties of ‘moth eye’ antireflection surfaces,” Opt. Acta Int. J. of Opt.29(7), 993–1009 (1982). [CrossRef]
  8. D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci.273(1587), 661–667 (2006). [CrossRef] [PubMed]
  9. J. Y. Chen, W. L. Chang, C. K. Huang, and K. W. Sun, “Biomimetic nanostructured antireflection coating and its application on crystalline silicon solar cells,” Opt. Express19(15), 14411–14419 (2011). [CrossRef] [PubMed]
  10. S. Jeong, E. C. Garnett, S. Wang, Z. Yu, S. Fan, M. L. Brongersma, M. D. McGehee, and Y. Cui, “Hybrid Silicon Nanocone-Polymer Solar Cells,” Nano Lett.12(6), 2971–2976 (2012). [CrossRef] [PubMed]
  11. D. S. Kim, M. S. Park, and J. H. Jang, “Fabrication of cone-shaped subwavelength structures by utilizing a confined convective self-assembly technique and inductively coupled-plasma reactive-ion etching,” J. Vac. Sci. Technol. B29(2), 020602 (2011). [CrossRef]
  12. J. W. Leem, Y. M. Song, and J. S. Yu, “Broadband wide-angle antireflection enhancement in AZO/Si shell/core subwavelength grating structures with hydrophobic surface for Si-based solar cells,” Opt. Express19(S5Suppl 5), A1155–A1164 (2011). [CrossRef] [PubMed]
  13. J. Tommila, V. Polojärvi, A. Aho, A. Tukiainen, J. Viheriälä, J. Salmi, A. Schramm, J. M. Kontio, A. Turtiainen, T. Niemi, and M. Guina, “Nanostructured broadband antireflection coatings on AlInP fabricated by nanoimprint lithography,” Sol. Energy Mater. Sol. Cells94(10), 1845–1848 (2010). [CrossRef]
  14. Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol.2(12), 770–774 (2007). [CrossRef] [PubMed]
  15. T. Lohmüller, M. Helgert, M. Sundermann, R. Brunner, and J. P. Spatz, “Biomimetic interfaces for high-performance optics in the deep-UV light range,” Nano Lett.8(5), 1429–1433 (2008). [CrossRef] [PubMed]
  16. H. Xu, N. Lu, D. Qi, L. Gao, J. Hao, Y. Wang, and L. Chi, “Broadband antireflective Si nanopillar arrays produced by nanosphere lithography,” Microelectron. Eng.86(4-6), 850–852 (2009). [CrossRef]
  17. A. D. Ormonde, E. C. M. Hicks, J. Castillo, and R. P. Van Duyne, “Nanosphere lithography: Fabrication of large-area Ag nanoparticle arrays by convective self-assembly and their characterization by scanning UV-visible extinction spectroscopy,” Langmuir20(16), 6927–6931 (2004). [CrossRef] [PubMed]
  18. S. M. Weekes, F. Y. Ogrin, and W. A. Murray, “Fabrication of large-area ferromagnetic arrays using etched nanosphere lithography,” Langmuir20(25), 11208–11212 (2004). [CrossRef] [PubMed]
  19. K. H. Hung, T. G. Chen, T. T. Yang, P. Yu, C. Y. Hong, Y. R. Wu, and G. C. Chi, “Antireflective scheme for InGaP/InGaAs/Ge triple junction solar cells based on TiO2 biomimetic structures,” in Proceedings of 38th IEEE Conference on Photovoltaic Specialists Conference(2012), pp.003322–003324.
  20. C. H. Chiu, P. Yu, H. C. Kuo, C. C. Chen, T. C. Lu, S. C. Wang, S. H. Hsu, Y. J. Cheng, and Y. C. Chang, “Broadband and omnidirectional antireflection employing disordered GaN nanopillars,” Opt. Express16(12), 8748–8754 (2008). [CrossRef] [PubMed]
  21. Z. Xiong, F. Zhao, J. Yang, and X. Hu, “Comparison of optical absorption in Si nanowire and nanoporous Si structures for photovoltaic applications,” Appl. Phys. Lett.96(18), 181903 (2010). [CrossRef]
  22. X. Hu, C. T. Chan, J. Zi, M. Li, and K. M. Ho, “Diamagnetic response of metallic photonic crystals at infrared and visible frequencies,” Phys. Rev. Lett.96(22), 223901 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited