OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 22, Iss. S2 — Mar. 10, 2014
  • pp: A301–A310

Aluminum plasmonic nanoparticles enhanced dye sensitized solar cells

Qi Xu, Fang Liu, Yuxiang Liu, Weisi Meng, Kaiyu Cui, Xue Feng, Wei Zhang, and Yidong Huang  »View Author Affiliations


Optics Express, Vol. 22, Issue S2, pp. A301-A310 (2014)
http://dx.doi.org/10.1364/OE.22.00A301


View Full Text Article

Enhanced HTML    Acrobat PDF (1265 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present an investigation on utilizing plasmonic aluminium (Al) nanoparticles (NPs) to enhance the optical absorption of dye-sensitized solar cells (DSCs). The Al NPs exhibit not only the light absorption enhancement in solar cells with localized surface plasmon (LSP) effect but also the chemical stability to iodide/triiodide electrolyte. Besides, the lower work function (~4.06 eV), compared with that of TiO2 (~4.6 eV), may suppress the quenching processes, such as charge transfer to metal NPs, to reduce the loss. Thus, high concentration of Al NPs could be incorporated into the TiO2 anodes, and the power conversion efficiency (PCE) of DSCs is improved by nearly 13%. Moreover, electrochemical impedance spectroscopy (EIS) characterization also indicates that the plasmonic DSCs with Al NPs present better electrochemical performance than regular ones, which contributes to the improvement of PCE of the device.

© 2014 Optical Society of America

OCIS Codes
(040.5350) Detectors : Photovoltaic
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Light Trapping for Photovoltaics

History
Original Manuscript: November 27, 2013
Revised Manuscript: January 11, 2014
Manuscript Accepted: January 12, 2014
Published: February 7, 2014

Citation
Qi Xu, Fang Liu, Yuxiang Liu, Weisi Meng, Kaiyu Cui, Xue Feng, Wei Zhang, and Yidong Huang, "Aluminum plasmonic nanoparticles enhanced dye sensitized solar cells," Opt. Express 22, A301-A310 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-S2-A301


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. O’regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized,” Nature353, 24 (1991).
  2. M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Müller, P. Liska, N. Vlachopoulos, and M. Grätzel, “Conversion of light to electricity by cis-X2bis (2, 2'-bipyridyl-4, 4'-dicarboxylate) ruthenium (II) charge-transfer sensitizers (X= Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes,” J. Am. Chem. Soc.115(14), 6382–6390 (1993). [CrossRef]
  3. M. Grätzel, “Photoelectrochemical cells,” Nature414(6861), 338–344 (2001). [CrossRef] [PubMed]
  4. M. Grätzel, “Dye-sensitized solar cells,” J. Photochem. Photobiol. Photochem. Rev.4(2), 145–153 (2003). [CrossRef]
  5. E. Dulkeith, M. Ringler, T. A. Klar, J. Feldmann, A. Muñoz Javier, and W. J. Parak, “Gold nanoparticles quench fluorescence by phase induced radiative rate suppression,” Nano Lett.5(4), 585–589 (2005). [CrossRef] [PubMed]
  6. M. Ihara, K. Tanaka, K. Sakaki, I. Honma, and K. Yamada, “Enhancement of the Absorption Coefficient of cis-(NCS) 2 Bis (2, 2'-bipyridyl-4, 4'-dicarboxylate) ruthenium (II) Dye in Dye-Sensitized Solar Cells by a Silver Island Film,” J. Phys. Chem. B101(26), 5153–5157 (1997). [CrossRef]
  7. K. Ishikawa, C.-J. Wen, K. Yamada, and T. Okubo, “The photocurrent of dye-sensitized solar cells enhanced by the surface plasmon resonance,” J. Chem. Eng. of Jpn37(5), 645–649 (2004). [CrossRef]
  8. C. Hagglund, M. Zach, and B. Kasemo, “Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons,” Appl. Phys. Lett.92, 013113 (2008).
  9. S. D. Standridge, G. C. Schatz, and J. T. Hupp, “Toward plasmonic solar cells: protection of silver nanoparticles via atomic layer deposition of TiO2.,” Langmuir25(5), 2596–2600 (2009). [CrossRef] [PubMed]
  10. C. Wen, K. Ishikawa, M. Kishima, and K. Yamada, “Effects of silver particles on the photovoltaic properties of dye-sensitized TiO2 thin films,” Sol. Energy Mater. Sol. Cells61(4), 339–351 (2000). [CrossRef]
  11. M. D. Brown, T. Suteewong, R. S. S. Kumar, V. D’Innocenzo, A. Petrozza, M. M. Lee, U. Wiesner, and H. J. Snaith, “Plasmonic dye-sensitized solar cells using core-shell metal-insulator nanoparticles,” Nano Lett.11(2), 438–445 (2011). [CrossRef] [PubMed]
  12. J. Qi, X. Dang, P. T. Hammond, and A. M. Belcher, “Highly efficient plasmon-enhanced dye-sensitized solar cells through metal@oxide core-shell nanostructure,” ACS Nano5(9), 7108–7116 (2011). [CrossRef] [PubMed]
  13. Q. Xu, F. Liu, W. Meng, and Y. Huang, “Plasmonic core-shell metal-organic nanoparticles enhanced dye-sensitized solar cells,” Opt. Express20(S6), A898–A907 (2012). [CrossRef]
  14. X. Dang, J. Qi, M. T. Klug, P.-Y. Chen, D. S. Yun, N. X. Fang, P. T. Hammond, and A. M. Belcher, “Tunable Localized Surface Plasmon-Enabled Broadband Light-Harvesting Enhancement for High-Efficiency Panchromatic Dye-Sensitized Solar Cells,” Nano Lett.13(2), 637–642 (2013). [CrossRef] [PubMed]
  15. Q. Xu, F. Liu, Y. Liu, K. Cui, X. Feng, W. Zhang, and Y. Huang, “Broadband light absorption enhancement in dye-sensitized solar cells with Au-Ag alloy popcorn nanoparticles,” Sci. Rep.3, 2112 (2013). [CrossRef] [PubMed]
  16. S. D. Standridge, G. C. Schatz, and J. T. Hupp, “Distance dependence of plasmon-enhanced photocurrent in dye-sensitized solar cells,” J. Am. Chem. Soc.131(24), 8407–8409 (2009). [CrossRef] [PubMed]
  17. G. Zhao, H. Kozuka, and T. Yoko, “Effects of the incorporation of silver and gold nanoparticles on the photoanodic properties of rose bengal sensitized TiO2 film electrodes prepared by sol-gel method,” Sol. Energy Mater. Sol. Cells46(3), 219–231 (1997). [CrossRef]
  18. W. M. Haynes, D. R. Lide, and T. J. Bruno, CRC Handbook of Chemistry and Physics 2012–2013, CRC press (2012).
  19. V. Kochergin, L. Neely, C.-Y. Jao, and H. D. Robinson, “Aluminum plasmonic nanostructures for improved absorption in organic photovoltaic devices,” Appl. Phys. Lett.98(13), 133305 (2011). [CrossRef]
  20. E. Stratakis, M. Barberoglou, C. Fotakis, G. Viau, C. Garcia, and G. A. Shafeev, “Generation of Al nanoparticles via ablation of bulk Al in liquids with short laser pulses,” Opt. Express17(15), 12650–12659 (2009). [CrossRef] [PubMed]
  21. X. Chen, B. Jia, J. K. Saha, B. Cai, N. Stokes, Q. Qiao, Y. Wang, Z. Shi, and M. Gu, “Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles,” Nano Lett.12(5), 2187–2192 (2012). [CrossRef] [PubMed]
  22. P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems,” Plasmonics2(3), 107–118 (2007). [CrossRef]
  23. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep.408(3-4), 131–314 (2005). [CrossRef]
  24. C. Nahm, H. Choi, J. Kim, D.-R. Jung, C. Kim, J. Moon, B. Lee, and B. Park, “The effects of 100 nm-diameter Au nanoparticles on dye-sensitized solar cells,” Appl. Phys. Lett.99(25), 253107 (2011). [CrossRef]
  25. Q. Wang, J.-E. Moser, and M. Grätzel, “Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells,” J. Phys. Chem. B109(31), 14945–14953 (2005). [CrossRef] [PubMed]
  26. J. Bisquert, F. Fabregat-Santiago, I. Mora-Seró, G. Garcia-Belmonte, and S. Giménez, “Electron lifetime in dye-sensitized solar cells: theory and interpretation of measurements,” J. Phys. Chem. C113(40), 17278–17290 (2009). [CrossRef]
  27. S. Chang, Q. Li, X. Xiao, K. Y. Wong, and T. Chen, “Enhancement of low energy sunlight harvesting in dye-sensitized solar cells using plasmonic gold nanorods,” Energy Environ. Sci.5(11), 9444–9448 (2012). [CrossRef]
  28. H. Choi, W. T. Chen, and P. V. Kamat, “Know thy nano neighbor. Plasmonic versus electron charging effects of metal nanoparticles in dye-sensitized solar cells,” ACS Nano6(5), 4418–4427 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited