OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 22, Iss. S2 — Mar. 10, 2014
  • pp: A335–A343

Dual-band infrared perfect absorber based on asymmetric T-shaped plasmonic array

Rui Feng, Weiqiang Ding, Linhua Liu, Lixue Chen, Jun Qiu, and Guoqiang Chen  »View Author Affiliations

Optics Express, Vol. 22, Issue S2, pp. A335-A343 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2340 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An infrared dual-band perfect absorber based on asymmetric T-shaped plasmonic array is designed and numerically investigated. Two distinct absorption peaks are achieved by localized surface plasmon polariton (LSPP) mode over a wide incident angular range. Both the absorption peaks can be finely tuned independently by varying the geometry of the structure. In our proposed structure, the period of the T-shaped structures becomes less and the multiple LSPP peaks are suppressed, which result in the sideband of absorption peaks very low. This dual-band perfect absorber has potential applications such as in infrared imaging devices, thermal bolometers, and wavelength selective radiators.

© 2014 Optical Society of America

OCIS Codes
(260.3060) Physical optics : Infrared
(300.1030) Spectroscopy : Absorption
(160.3918) Materials : Metamaterials
(250.5403) Optoelectronics : Plasmonics

ToC Category:

Original Manuscript: November 21, 2013
Revised Manuscript: January 20, 2014
Manuscript Accepted: January 20, 2014
Published: February 13, 2014

Rui Feng, Weiqiang Ding, Linhua Liu, Lixue Chen, Jun Qiu, and Guoqiang Chen, "Dual-band infrared perfect absorber based on asymmetric T-shaped plasmonic array," Opt. Express 22, A335-A343 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008). [CrossRef] [PubMed]
  2. N. Landy, C. Bingham, T. Tyler, N. Jokerst, D. Smith, and W. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009). [CrossRef]
  3. Y. Q. Ye, Y. Jin, and S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B 27(3), 498–504 (2010). [CrossRef]
  4. Y. C. Chang, C. M. Wang, M. N. Abbas, M. H. Shih, and D. P. Tsai, “T-shaped plasmonic array as a narrow-band thermal emitter or biosensor,” Opt. Express 17(16), 13526–13531 (2009). [CrossRef] [PubMed]
  5. C. W. Cheng, M. N. Abbas, Z. C. Chang, M. H. Shih, C. M. Wang, M. C. Wu, and Y. C. Chang, “Angle-independent plasmonic infrared band-stop reflective filter based on the Ag/SiO₂/Ag T-shaped array,” Opt. Lett. 36(8), 1440–1442 (2011). [CrossRef] [PubMed]
  6. J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010). [CrossRef]
  7. M. N. Abbas, C. W. Cheng, Y. C. Chang, M. H. Shih, H. H. Chen, and S. C. Lee, “Angle and polarization independent narrow-band thermal emitter made of metallic disk on SiO2,” Appl. Phys. Lett. 98(12), 121116 (2011). [CrossRef]
  8. J. Wang, Y. Chen, J. Hao, M. Yan, and M. Qiu, “Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared,” J. Appl. Phys. 109(7), 074510 (2011). [CrossRef]
  9. C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, Y. T. Chang, S. C. Lee, and D. P. Tsai, “Reflection and emission properties of an infrared emitter,” Opt. Express 15(22), 14673–14678 (2007). [CrossRef] [PubMed]
  10. C. W. Cheng, M. N. Abbas, M. H. Shih, and Y. C. Chang, “Characterization of the surface plasmon polariton band gap in an Ag/SiO2/Ag T-shaped periodical structure,” Opt. Express 19(24), 23698–23705 (2011). [CrossRef] [PubMed]
  11. W. Chih-Ming and T. Din Ping, “Plasmonic infrared bandstop reflective filter,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4601005 (2013). [CrossRef]
  12. C.-M. Wang and C.-J. Yu, “Free-space plasmonic filter with dual-resonance wavelength using asymmetric T-shaped metallic array,” Plasmonics 8(2), 385–390 (2013). [CrossRef]
  13. B. Zhang, Y. Zhao, Q. Hao, B. Kiraly, I. C. Khoo, S. Chen, and T. J. Huang, “Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array,” Opt. Express 19(16), 15221–15228 (2011). [CrossRef] [PubMed]
  14. P. Bouchon, C. Koechlin, F. Pardo, R. Haïdar, and J. L. Pelouard, “Wideband omnidirectional infrared absorber with a patchwork of plasmonic nanoantennas,” Opt. Lett. 37(6), 1038–1040 (2012). [CrossRef] [PubMed]
  15. C. W. Cheng, M. N. Abbas, C. W. Chiu, K. T. Lai, M. H. Shih, and Y. C. Chang, “Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays,” Opt. Express 20(9), 10376–10381 (2012). [CrossRef] [PubMed]
  16. J. Hendrickson, J. Guo, B. Zhang, W. Buchwald, and R. Soref, “Wideband perfect light absorber at midwave infrared using multiplexed metal structures,” Opt. Lett. 37(3), 371–373 (2012). [CrossRef] [PubMed]
  17. B. Zhang, J. Hendrickson, and J. Guo, “Multispectral near-perfect metamaterial absorbers using spatially multiplexed plasmon resonance metal square structures,” J. Opt. Soc. Am. B 30(3), 656–662 (2013). [CrossRef]
  18. N. Zhang, P. Zhou, D. Cheng, X. Weng, J. Xie, and L. Deng, “Dual-band absorption of mid-infrared metamaterial absorber based on distinct dielectric spacing layers,” Opt. Lett. 38(7), 1125–1127 (2013). [CrossRef] [PubMed]
  19. F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012). [CrossRef]
  20. J. Grant, Y. Ma, S. Saha, A. Khalid, and D. R. Cumming, “Polarization insensitive, broadband terahertz metamaterial absorber,” Opt. Lett. 36(17), 3476–3478 (2011). [CrossRef] [PubMed]
  21. Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012). [CrossRef] [PubMed]
  22. C. Wu and G. Shvets, “Design of metamaterial surfaces with broadband absorbance,” Opt. Lett. 37(3), 308–310 (2012). [CrossRef] [PubMed]
  23. Y. Cui, J. Xu, K. Hung Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011). [CrossRef]
  24. J. Le Perchec, Y. Desieres, N. Rochat, and R. Espiau de Lamaestre, “Subwavelength optical absorber with an integrated photon sorter,” Appl. Phys. Lett. 100(11), 113305 (2012). [CrossRef]
  25. C. Koechlin, P. Bouchon, F. Pardo, J. Jaeck, X. Lafosse, J. L. Pelouard, and R. Haïdar, “Total routing and absorption of photons in dual color plasmonic antennas,” Appl. Phys. Lett. 99(24), 241104 (2011). [CrossRef]
  26. M. N. Abbas, Y. C. Chang, and M. H. Shih, “Plasmon-polariton band structures of asymmetric T-shaped plasmonic gratings,” Opt. Express 18(3), 2509–2514 (2010). [CrossRef] [PubMed]
  27. E. D. Palik, Handbook of Optical Constants of Solids (Academic, Boston, 1985).
  28. C. J. Chen, J. S. Chen, and Y. B. Chen, “Optical responses from lossy metallic slit arrays under the excitation of a magnetic polariton,” J. Opt. Soc. Am. B 28(8), 1798–1806 (2011). [CrossRef]
  29. L. Wang, A. Haider, and Z. Zhang, “Effect of magnetic polaritons on the radiative properties of inclined plate arrays,” J. Quant. Spectrosc. Radiat. Transf. 132, 52–60 (2014).
  30. L. Wang and Z. M. Zhang, “Effect of magnetic polaritons on the radiative properties of double-layer nanoslit arrays,” J. Opt. Soc. Am. B 27(12), 2595–2604 (2010). [CrossRef]
  31. L. P. Wang and Z. M. Zhang, “Phonon-mediated magnetic polaritons in the infrared region,” Opt. Express 19(S2Suppl 2), A126–A135 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited