OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 22, Iss. S2 — Mar. 10, 2014
  • pp: A359–A364

Type II GaSb quantum ring solar cells under concentrated sunlight

Che-Pin Tsai, Shun-Chieh Hsu, Shih-Yen Lin, Ching-Wen Chang, Li-Wei Tu, Kun-Cheng Chen, Tsong-Sheng Lay, and Chien-chung Lin  »View Author Affiliations


Optics Express, Vol. 22, Issue S2, pp. A359-A364 (2014)
http://dx.doi.org/10.1364/OE.22.00A359


View Full Text Article

Enhanced HTML    Acrobat PDF (1411 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A type II GaSb quantum ring solar cell is fabricated and measured under the concentrated sunlight. The external quantum efficiency confirms the extended absorption from the quantum rings at long wavelength coinciding with the photoluminescence results. The short-circuit current of the quantum ring devices is 5.1% to 9.9% more than the GaAs reference's under various concentrations. While the quantum ring solar cell does not exceed its GaAs counterpart in efficiency under one-sun, the recovery of the open-circuit voltages at higher concentration helps to reverse the situation. A slightly higher efficiency (10.31% vs. 10.29%) is reported for the quantum ring device against the GaAs one.

© 2014 Optical Society of America

OCIS Codes
(040.5350) Detectors : Photovoltaic
(350.6050) Other areas of optics : Solar energy
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

ToC Category:
Photovoltaics

History
Original Manuscript: November 21, 2013
Revised Manuscript: January 23, 2014
Manuscript Accepted: February 4, 2014
Published: February 14, 2014

Citation
Che-Pin Tsai, Shun-Chieh Hsu, Shih-Yen Lin, Ching-Wen Chang, Li-Wei Tu, Kun-Cheng Chen, Tsong-Sheng Lay, and Chien-chung Lin, "Type II GaSb quantum ring solar cells under concentrated sunlight," Opt. Express 22, A359-A364 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-S2-A359


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Shockley and H. J. Queisser, “Detailed Balance Limit of Efficiency of p-n Junction Solar Cells,” J. Appl. Phys.32(3), 510–519 (1961). [CrossRef]
  2. A. Luque and A. Martí, “Increasing the Efficiency of Ideal Solar Cells by Photon Induced Transitions at Intermediate Levels,” Phys. Rev. Lett.78(26), 5014–5017 (1997). [CrossRef]
  3. S. M. Hubbard, C. D. Cress, C. G. Bailey, R. P. Raffaelle, S. G. Bailey, and D. M. Wilt, “Effect of strain compensation on quantum dot enhanced GaAs solar cells,” Appl. Phys. Lett.92(12), 123512 (2008). [CrossRef]
  4. R. B. Laghumavarapu, A. Moscho, A. Khoshakhlagh, M. El-Emawy, L. F. Lester, and D. L. Huffaker, “GaSb/GaAs type II quantum dot solar cells for enhanced infrared spectral response,” Appl. Phys. Lett.90(17), 173125 (2007). [CrossRef]
  5. P. G. Linares, A. Martí, E. Antolín, C. D. Farmer, Í. Ramiro, C. R. Stanley, and A. Luque, “Voltage recovery in intermediate band solar cells,” Sol. Energy Mater. Sol. Cells98, 240–244 (2012). [CrossRef]
  6. C.-C. Lin, M.-H. Tan, C.-P. Tsai, K.-Y. Chuang, and T. S. Lay, “Numerical Study of Quantum-Dot-Embedded Solar Cells,” IEEE J. Sel. Top. Quant.19, 4000110 (2013).
  7. A. Luque, A. Marti, and C. Stanley, “Understanding intermediate-band solar cells,” Nat. Photonics6(3), 146–152 (2012). [CrossRef]
  8. N. López, L. A. Reichertz, K. M. Yu, K. Campman, and W. Walukiewicz, “Engineering the Electronic Band Structure for Multiband Solar Cells,” Phys. Rev. Lett.106(2), 028701 (2011). [CrossRef] [PubMed]
  9. C. G. Bailey, D. V. Forbes, R. P. Raffaelle, and S. M. Hubbard, “Near 1 V open circuit voltage InAs/GaAs quantum dot solar cells,” Appl. Phys. Lett.98(16), 163105 (2011). [CrossRef]
  10. T. Sugaya, O. Numakami, R. Oshima, S. Furue, H. Komaki, T. Amano, K. Matsubara, Y. Okano, and S. Niki, “Ultra-high stacks of InGaAs/GaAs quantum dots for high efficiency solar cells,” Energy & Environmental Science5(3), 6233–6237 (2012). [CrossRef]
  11. S. Tomic, A. Marti, E. Antolin, and A. Luque, “On inhibiting Auger intraband relaxation in InAs/GaAs quantum dot intermediate band solar cells,” Appl. Phys. Lett.99(5), 053504 (2011). [CrossRef]
  12. P. J. Carrington, M. C. Wagener, J. R. Botha, A. M. Sanchez, and A. Krier, “Enhanced infrared photo-response from GaSb/GaAs quantum ring solar cells,” Appl. Phys. Lett.101(23), 231101 (2012). [CrossRef]
  13. T. Tayagaki, N. Usami, P. Wugen, Y. Hoshi, and Y. Kanemitsu, “Enhanced carrier extraction under strong light irradiation in Ge/Si type-II quantum dot solar cells,” in Photovoltaic Specialists Conference (PVSC),201238th IEEE(IEEE, Austin, TX, 2012), pp. 003200–003203. [CrossRef]
  14. A. Alemu, J. A. H. Coaquira, and A. Freundlich, “Dependence of device performance on carrier escape sequence in multi-quantum-well p-i-n solar cells,” J. Appl. Phys.99(8), 084506 (2006). [CrossRef]
  15. J. Hwang, A. J. Martin, J. M. Millunchick, and J. D. Phillips, “Thermal emission in type-II GaSb/GaAs quantum dots and prospects for intermediate band solar energy conversion,” J. Appl. Phys.111(7), 074514 (2012). [CrossRef]
  16. V. Popescu, G. Bester, M. C. Hanna, A. G. Norman, and A. Zunger, “Theoretical and experimental examination of the intermediate-band concept for strain-balanced (In,Ga)As/Ga(As,P) quantum dot solar cells,” Phys. Rev. B78(20), 205321 (2008). [CrossRef]
  17. A. Martí, E. Antolín, E. Cánovas, N. López, P. G. Linares, A. Luque, C. R. Stanley, and C. D. Farmer, “Elements of the design and analysis of quantum-dot intermediate band solar cells,” Thin Solid Films516(20), 6716–6722 (2008). [CrossRef]
  18. N. Ahsan, N. Miyashita, M. M. Islam, K. M. Yu, W. Walukiewicz, and Y. Okada, “Two-photon excitation in an intermediate band solar cell structure,” Appl. Phys. Lett.100(17), 172111 (2012). [CrossRef] [PubMed]
  19. S. M. Hubbard, C. G. Bailey, R. Aguinaldo, S. Polly, D. V. Forbes, and R. P. Raffaelle, “Characterization of quantum dot enhanced solar cells for concentrator photovoltaics,” in Photovoltaic Specialists Conference (PVSC),200934th IEEE(IEEE, Philadelphia, PA, 2009), 000090–000095. [CrossRef]
  20. K. Yoshida, Y. Okada, and N. Sano, “Device simulation of intermediate band solar cells: Effects of doping and concentration,” J. Appl. Phys.112, 084510 (2012).
  21. W.-H. Lin, K.-W. Wang, S.-W. Chang, M.-H. Shih, and S.-Y. Lin, “Type-II GaSb/GaAs coupled quantum rings: Room-temperature luminescence enhancement and recombination lifetime elongation for device applications,” Appl. Phys. Lett.101(3), 031906 (2012). [CrossRef]
  22. W.-H. Lin, M.-Y. Lin, S.-Y. Wu, and S.-Y. Lin, “Room-Temperature Electro-Luminescence of Type-II GaSb/GaAs Quantum Rings,” IEEE Photonic Tech. L.24(14), 1203–1205 (2012). [CrossRef]
  23. J. Nelson, The Physics of Solar Cells (World Scientific, 2003).
  24. T. Brunhes, P. Boucaud, S. Sauvage, F. Aniel, J. M. Lourtioz, C. Hernandez, Y. Campidelli, O. Kermarrec, D. Bensahel, G. Faini, and I. Sagnes, “Electroluminescence of Ge/Si self-assembled quantum dots grown by chemical vapor deposition,” Appl. Phys. Lett.77(12), 1822–1824 (2000). [CrossRef]
  25. T. Gu, M. A. El-Emawy, K. Yang, A. Stintz, and L. F. Lester, “Resistance to edge recombination in GaAs-based dots-in-a-well solar cells,” Appl. Phys. Lett.95(26), 261106 (2009). [CrossRef]
  26. M. D. Kelzenberg, D. B. Turner-Evans, B. M. Kayes, M. A. Filler, M. C. Putnam, N. S. Lewis, and H. A. Atwater, “Photovoltaic Measurements in Single-Nanowire Silicon Solar Cells,” Nano Lett.8(2), 710–714 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited