OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 22, Iss. S2 — Mar. 10, 2014
  • pp: A438–A445

Plasmonic ITO-free polymer solar cell

Ming-Yi Lin, Yu Ling Kang, Yu-Cheng Chen, Tsung-Han Tsai, Shih-Chieh Lin, Yi-Hsiang Huang, Yi-Jiun Chen, Chun-Yang Lu, Hoang Yan Lin, Lon A. Wang, Chung-Chih Wu, and Si-Chen Lee  »View Author Affiliations

Optics Express, Vol. 22, Issue S2, pp. A438-A445 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1910 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The aluminum and sliver multilayered nano-grating structure is fabricated by laser interference lithography and the intervals between nanoslits is filled with modified PEDOT:PSS. The grating structured transparent electrode functions as the anti-reflection layer which not only decreases the reflected light but also increases the absorption of the active layer. The performances of P3HT:PC61BM solar cells are studied experimentally and theoretically in detail. The field intensities of the transverse magnetic (TM) and transverse electrical (TE) waves distributed in the active layer are simulated by rigorous coupled wave analysis (RCWA). The power conversion efficiency of the plasmonic ITO-free polymer solar cell can reach 3.64% which is higher than ITO based polymer solar cell with efficiency of 3.45%.

© 2014 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(350.2770) Other areas of optics : Gratings

ToC Category:
Light Trapping for Photovoltaics

Original Manuscript: December 9, 2013
Revised Manuscript: January 15, 2014
Manuscript Accepted: January 23, 2014
Published: February 21, 2014

Ming-Yi Lin, Yu Ling Kang, Yu-Cheng Chen, Tsung-Han Tsai, Shih-Chieh Lin, Yi-Hsiang Huang, Yi-Jiun Chen, Chun-Yang Lu, Hoang Yan Lin, Lon A. Wang, Chung-Chih Wu, and Si-Chen Lee, "Plasmonic ITO-free polymer solar cell," Opt. Express 22, A438-A445 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Dou, J. You, J. Yang, C. C. Chen, Y. He, S. Murase, T. Moriarty, K. Emery, G. Li, and Y. Yang, “Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer,” Nat. Photonics6(3), 180–185 (2012). [CrossRef]
  2. J. You, C. C. Chen, L. Dou, S. Murase, H. S. Duan, S. A. Hawks, T. Xu, H. J. Son, L. Yu, G. Li, and Y. Yang, “Metal oxide nanoparticles as an electron-transport layer in high-performance and stable inverted polymer solar cells,” Adv. Mater.24(38), 5267–5272 (2012). [CrossRef] [PubMed]
  3. L. Dou, J. Gao, E. Richard, J. You, C. C. Chen, K. C. Cha, Y. He, G. Li, and Y. Yang, “Systematic investigation of benzodithiophene- and diketopyrrolopyrrole-based low-bandgap polymers designed for single junction and tandem polymer solar cells,” J. Am. Chem. Soc.134(24), 10071–10079 (2012). [CrossRef] [PubMed]
  4. G. Li, R. Zhu, and Y. Yang, “Polymer solar cells,” Nat. Photonics6(3), 153–161 (2012). [CrossRef]
  5. C. Min, J. Li, G. Veronis, J. Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett.96(13), 133302 (2010). [CrossRef]
  6. Y. Zhan, J. Zhao, C. Zhou, X. Wang, Y. P. Li, and Y. Li, “Surface plasma coupled photovoltaic cell with double layered triangular grating,” IEEE Photonics J.4(3), 1021–1026 (2012). [CrossRef]
  7. K. Tvingstedt and O. Inganäs, “Electrode grids for ITO-free organic photovoltaic devices,” Adv. Mater.19(19), 2893–2897 (2007). [CrossRef]
  8. J. Meiss, M. K. Riede, and K. Leo, “Towards efficient tin-doped indium oxide ITO-free inverted organic solar cells using metal cathodes,” Appl. Phys. Lett.94(1), 013303 (2009). [CrossRef]
  9. Y. Galagan, J.-E. J. M. Rubingh, R. Andriessen, C.-C. Fan, P. W. M. Blom, S. C. Veenstra, and J. M. Kroon, “ITO free flexible organic solar cells with printed current collecting grids,” Sol. Energy Mater. Sol. Cells94, 1339–1343 (2011). [CrossRef]
  10. J. Meiss, N. Allinger, M. Riede, and K. Leo, “Improved light harvesting in tin doped indum oxide ITO free inverted bulk heterojunction organic solar cells using capping layers,” Appl. Phys. Lett.93(10), 103311 (2008). [CrossRef]
  11. S. I. Na, S. S. Kim, J. Jo, and D. Y. Kim, “Efficient and flexible ITO free organic solar cells using highly conductive polymer anodes,” Adv. Mater.20(21), 4061–4067 (2008). [CrossRef]
  12. T. R. Andersen, H. F. Dam, B. Andreasen, M. Hösel, M. V. Madsen, S. A. Gevorgyan, R. R. Søndergaard, M. Jørgensen, and F. C. Krebs, “A rational method for developing and testing stable flexible indium- and vacuum-free multilayer tandem polymer solar cells comprising up to twelve roll processed layers,” Sol. Energy Mater. Sol. Cells120, 735–743 (2014). [CrossRef]
  13. D. Angmo, S. A. Gevorgyan, T. T. Larsen-Olsen, R. R. Sondergaard, M. Hosel, M. Jorgensen, R. Gupta, G. U. Kulkarni, and F. C. Krebs, “Scalability and stability of very thin, roll-to-roll processed, large area, indium-tin-oxide free polymer solar cell modules,” Org. Electron.14(3), 984–994 (2013). [CrossRef]
  14. R. R. Søndergaard, M. Hösel, and F. C. Krebs, “Roll-to-roll fabrication of large area functional organic materials,” J. Polym. Sci. Pol. Phys.51(1), 16–34 (2013). [CrossRef]
  15. D. Angmo, I. Gonzalez-Valls, S. Veenstra, W. Verhees, S. Sapkota, S. Schiefer, B. Zimmermann, Y. Galagan, J. Sweelssen, M. Lira-Cantu, R. Andriessen, J. M. Kroon, and F. C. Krebs, “Low-cost upscaling compatibility of five different ITO-free architectures for polymer solar cells,” J. Appl. Polym. Sci.130(2), 944–954 (2013). [CrossRef]
  16. N. Espinosa, F. O. Lenzmann, S. Ryley, D. Angmo, M. Hosel, R. R. Søndergaard, D. Huss, S. Dafinger, S. Gritsch, J. M. Kroon, M. Jørgensen, and F. C. Krebs, “OPV for mobile applications: an evaluation of roll-to- roll processed indium and silver free polymer solar cells through analysis of life cycle, cost and layer quality using inline optical and functional inspection tools,” J. Mater. Chem. A1(24), 7037–7049 (2013). [CrossRef]
  17. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9(9), 707–715 (2010). [CrossRef] [PubMed]
  18. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010). [CrossRef] [PubMed]
  19. Y. A. Akimov and W. S. Koh, “Resonant and nonresonant plasmonic nanoparticle enhancement for thin-film silicon solar cells,” Nanotechnology21(23), 235201 (2010). [CrossRef] [PubMed]
  20. C. I. Ho, D. J. Yeh, V. C. Su, C. H. Yang, P. C. Yang, M. Y. Pu, C. H. Kuan, I. C. Cheng, and S. C. Lee, “Plasmonic multilayer nanoparticles enhanced photocurrent in thin film hydrogenated amorphous silicon solar cells,” J. Appl. Phys.112(2), 023113 (2012). [CrossRef]
  21. C. E. Petoukhoff, D. K. Vijapurapu, and D. M. O’Carroll, “Computational comparison of conventional and inverted organic photovoltaic performance parameters with varying metal electrode surface workfunction,” Sol. Energy Mater. Sol. Cells120, 572–583 (2014). [CrossRef]
  22. M. Y. Lin, H. H. Chen, K. H. Hsu, Y. H. Huang, Y. J. Chen, H. Y. Lin, Y. K. Wu, L. A. Wang, C. C. Wu, and S. C. Lee, “White organic light emitting diode with linearly polarized emission,” IEEE Photonics Technol. Lett.25, 1321–1323 (2013).
  23. N. Sekine, C. H. Chou, W. L. Kwan, and Y. Yang, “ZnO nano-ridge structure and its application in inverted polymer solar cell,” Org. Electron.10(8), 1473–1477 (2009). [CrossRef]
  24. M. Y. Lin, C. Y. Lee, S. C. Shiu, I. J. Wang, J. Y. Sun, W. H. Wu, Y. H. Lin, J. S. Huang, and C. F. Lin, “Sol gel processed CuOx thin film as an anode interlayer for inverted polymer solar cells,” Org. Electron.11(11), 1828–1834 (2010). [CrossRef]
  25. M. Y. Liu, C. H. Chang, C. H. Chang, K. H. Tsai, J. S. Huang, C. Y. Chou, I. J. Wang, P. S. Wang, C. Y. Lee, C. H. Chao, C. L. Yeh, C. I. Wu, and C. F. Lin, “Morphological evolution of the poly(3- hexylthiophene)/[6,6]-phenyl-C61-butyric acid methyl ester, oxidation of the silver electrode, and their influences on the performance of inverted polymer solar cells with a sol–gel derived zinc oxide electron selective layer,” Thin Solid Films518(17), 4964–4969 (2010). [CrossRef]
  26. M. Zhang, T.-L. Chiu, C.-F. Lin, J.-H. Lee, J.-K. Wang, and Y. Wu, “Roughness characterization of silver oxide anodes for use in efficient top-illuminated organic solar cells,” Sol. Energy Mater. Sol. Cells95(9), 2606–2609 (2011). [CrossRef]
  27. H. L. Yip, S. K. Hau, N. S. Baek, H. Ma, and A. K. Y. Jen, “Polymer solar cells that use self-assembled- monolayer-modified ZnO/metals as cathodes,” Adv. Mater.20(12), 2376–2382 (2008). [CrossRef]
  28. T. Ameri, G. Dennler, C. Waldauf, H. Azimi, A. Seemann, K. Forberich, J. Hauch, M. Scharber, K. Hingerl, and C. J. Brabec, “Fabrication, optical modeling, and color characterization of semitransparent bulk- heterojunction organic solar cells in an inverted structure,” Adv. Funct. Mater.20(10), 1592–1598 (2010). [CrossRef]
  29. F. Zhang, X. Xu, W. Tang, J. Zhang, Z. Zhuo, J. Wang, J. Wang, Z. Xu, and Y. Wang, “Recent development of the inverted configuration organic solar cells,” Sol. Energy Mater. Sol. Cells95(7), 1785–1799 (2011). [CrossRef]
  30. R. Steim, F. R. Kogler, and C. J. Brabec, “Interface materials for organic solar cells,” J. Mater. Chem.20(13), 2499–2512 (2010). [CrossRef]
  31. V. D. Mihailetchi, P. W. M. Blom, J. C. Hummelen, and M. T. Rispens, “Cathode dependence of the open- circuit voltage of polymer:fullerene bulk heterojunction solar cells,” J. Appl. Phys.94(10), 6849–6854 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited