OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 22, Iss. S2 — Mar. 10, 2014
  • pp: A452–A464

Enhanced up-conversion for photovoltaics via concentrating integrated optics

Georgios E. Arnaoutakis, Jose Marques-Hueso, Aruna Ivaturi, Karl W. Krämer, Stefan Fischer, Jan Christoph Goldschmidt, and Bryce S. Richards  »View Author Affiliations

Optics Express, Vol. 22, Issue S2, pp. A452-A464 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1942 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Concentrating optics are integrated into up-conversion photovoltaic (UC-PV) devices to independently concentrate sub-band-gap photons on the up-conversion layer, without affecting the full solar concentration on the overlying solar cell. The UC-PV devices consist of silicon solar cells optimized for up-conversion, coupled with tapered and parabolic dielectric concentrators, and hexagonal sodium yttrium fluoride (β-NaYF4) up-converter doped with 25% trivalent erbium (Er3+). A normalized external quantum efficiency of 1.75x10ˉ2 cm2/W and 3.38x10ˉ2 cm2/W was obtained for the UC-PV device utilizing tapered and parabolic concentrators respectively. Although low to moderate concentration was shown to maximize UC, higher concentration lead to saturation and reduced external quantum efficiency. The presented work highlights some of the implications associated with the development of UC-PV devices and designates a substantial step for integration in concentrating PV.

© 2014 Optical Society of America

OCIS Codes
(040.5350) Detectors : Photovoltaic
(160.5690) Materials : Rare-earth-doped materials
(190.7220) Nonlinear optics : Upconversion
(220.1770) Optical design and fabrication : Concentrators
(250.5230) Optoelectronics : Photoluminescence
(300.6420) Spectroscopy : Spectroscopy, nonlinear
(350.6050) Other areas of optics : Solar energy

ToC Category:
Optical Design for Energy Applications

Original Manuscript: December 9, 2013
Revised Manuscript: February 7, 2014
Manuscript Accepted: February 7, 2014
Published: February 24, 2014

Virtual Issues
Renewable Energy and the Environment (2014) Optics Express

Georgios E. Arnaoutakis, Jose Marques-Hueso, Aruna Ivaturi, Karl W. Krämer, Stefan Fischer, Jan Christoph Goldschmidt, and Bryce S. Richards, "Enhanced up-conversion for photovoltaics via concentrating integrated optics," Opt. Express 22, A452-A464 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961). [CrossRef]
  2. A. Richter, M. Hermle, and S. W. Glunz, “Reassessment of the Limiting Efficiency for Crystalline Silicon Solar Cells,” IEEE J. Photovoltaics 3(4), 1184–1191 (2013). [CrossRef]
  3. T. Trupke, M. Green, and P. Wurfel, “Improving solar cell efficiencies by up-conversion of sub-band-gap light,” J. Appl. Phys. 92(7), 4117–4122 (2002). [CrossRef]
  4. F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004). [CrossRef] [PubMed]
  5. M. Pollnau, D. Gamelin, S. Lüthi, H. Güdel, and M. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000). [CrossRef]
  6. J. Suyver, A. Aebischer, S. García-Revilla, P. Gerner, and H. Güdel, “Anomalous power dependence of sensitized upconversion luminescence,” Phys. Rev. B 71(12), 125123 (2005). [CrossRef]
  7. A. Ivaturi, S. K. MacDougall, R. Martín-Rodríguez, M. Quintanilla, J. Marques-Hueso, K. W. Kramer, A. Meijerink, and B. S. Richards, “Optimizing infrared to near infrared upconversion quantum yield of β-NaYF4: Er3+ in fluoropolymer matrix for photovoltaic devices,” J. Appl. Phys. 114, 013505 (2013).
  8. A. Shalav, B. S. Richards, T. Trupke, K. W. Krämer, and H. U. Gudel, “Application of NaYF4:Er3+ up-converting phosphors for enhanced near-infrared silicon solar cell response,” Appl. Phys. Lett. 86(1), 013505 (2005). [CrossRef]
  9. B. S. Richards and A. Shalav, “Enhancing the near-infrared spectral response of silicon optoelectronic devices via up-conversion,” IEEE Trans. Electron. Dev. 54(10), 2679–2684 (2007). [CrossRef]
  10. H. Steinkemper, S. Fischer, M. Hermle, and J. Goldschmidt, “Stark level analysis of the spectral line shape of electronic transitions in rare earth ions embedded in host crystals,” New J. Phys. 15(5), 053033 (2013). [CrossRef]
  11. S. Fischer, J. C. Goldschmidt, P. Loper, G. H. Bauer, R. Bruggemann, K. Krämer, D. Biner, M. Hermle, and S. W. Glunz, “Enhancement of silicon solar cell efficiency by upconversion: Optical and electrical characterization,” J. Appl. Phys. 108(4), 044912 (2010). [CrossRef]
  12. S. Fischer, A. Ivaturi, B. Frohlich, M. Rudiger, A. Richter, K. W. Krämer, B. S. Richards, and J. C. Goldschmidt, “Upconverter silicon solar cell devices for efficient utilization of sub-band-gap photons under concentrated solar radiation,” IEEE J. Photovoltaics 4(1), 183–189 (2014). [CrossRef]
  13. C. Gueymard, D. Myers, and K. Emery, “Proposed reference irradiance spectra for solar energy systems testing,” Sol. Energy 73(6), 443–467 (2002). [CrossRef]
  14. J. Handy and T. Peterson, “Concentrating PV survey: an unbiased overview,” in SPIE Solar Energy + Technology, (International Society for Optics and Photonics, 2011), 810808–810808–810811.
  15. D. Cooke, P. Gleckman, H. Krebs, J. O’Gallagher, D. Sagie, and R. Winston, “Sunlight brighter than the sun,” Nature 346(6287), 802 (1990). [CrossRef]
  16. G. E. Arnaoutakis, J. Marques-Hueso, T. K. Mallick, and B. S. Richards, “Coupling of sunlight into optical fibres and spectral dependence for solar energy applications,” Sol. Energy 93, 235–243 (2013). [CrossRef]
  17. J. M. Gordon, E. A. Katz, D. Feuermann, and M. Huleihil, “Toward ultrahigh-flux photovoltaic concentration,” Appl. Phys. Lett. 84(18), 3642–3644 (2004). [CrossRef]
  18. E. A. Katz, J. M. Gordon, and D. Feuermann, “Effects of ultra high flux and intensity distribution in multi junction solar cells,” Prog. Photovolt. Res. Appl. 14(4), 297–303 (2006). [CrossRef]
  19. P. Gibart, F. Auzel, J.-C. Guillaume, and K. Zahraman, “Below brand-gap IR response of substrate-free GaAs solar cells using two-photon up-conversion,” Jpn. J. Appl. Phys. 35(8), 4401–4402 (1996). [CrossRef]
  20. A. Slade and V. Garboushian, “27.6% efficient silicon concentrator solar cells for mass production,” in Technical Digest,15th International Photovoltaic Science and Engineering Conference,Beijing, 2005)
  21. C. Algora, E. Ortiz, I. Rey-Stolle, V. Diaz, R. Pena, V. M. Andreev, V. P. Khvostikov, and V. D. Rumyantsev, “A GaAs solar cell with an efficiency of 26.2% at 1000 suns and 25.0% at 2000 suns,” IEEE Trans. Electron. Dev. 48(5), 840–844 (2001). [CrossRef]
  22. C. Strümpel, “Application of erbium-doped up-converters to silicon solar cells,” Doctoral Thesis (Universität Konstanz, Konstanz, Germany, 2007).
  23. J. C. Goldschmidt, P. Loper, S. Fischer, S. Janz, M. Peters, S. W. Glunz, G. Willeke, E. Lifshitz, K. Krämer, and D. Biner, “Advanced upconverter systems with spectral and geometric concentration for high upconversion efficiencies,” in Optoelectronic and Microelectronic Materials and Devices,2008. COMMAD 2008. Conference on, (IEEE, 2008), 307–311. [CrossRef]
  24. A. Mohr, M. Steuder, A. Bett, and S. Glunz, “Silicon concentrator cells designed for a direct mounting on compound parabolic concentrator,” in Photovoltaic Energy Conversion,2003. Proceedings of 3rd World Conference on, (IEEE, 2003), 841–844.
  25. A. Mohr, “Silicon concentrator cells in a two-stage photovoltaic system with a concentration factor of 300×,” Doctoral Thesis (Albert-Ludwigs-Universität, Freiburg im Breisgau, Germany, 2005).
  26. A. Mohr, T. Roth, and S. W. Glunz, “BICON: high concentration PV using one axis tracking and silicon concentrator cells,” Prog. Photovolt. Res. Appl. 14(7), 663–674 (2006). [CrossRef]
  27. M. Rüdiger, S. Fischer, J. Frank, A. Ivaturi, B. S. Richards, K. W. Krämer, M. Hermle, and J. C. Goldschmidt, “Bifacial n-Type Silicon Solar Cells for Upconversion Applications,” Sol. Energy Mater. Sol. Cells.
  28. K. W. Krämer, D. Biner, G. Frei, H. U. Gudel, M. P. Hehlen, and S. R. Luthi, “Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors,” Chem. Mater. 16(7), 1244–1251 (2004). [CrossRef]
  29. W. Welford and R. Winston, High Collection Nonimaging Optics (Academic Press, San Diego, 1989).
  30. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 43),” Prog. Photovolt. Res. Appl. 22(1), 1–9 (2014). [CrossRef]
  31. J. M. Bennett and E. Ashley, “Infrared reflectance and emittance of silver and gold evaporated in ultrahigh vacuum,” Appl. Opt. 4(2), 221–224 (1965). [CrossRef]
  32. J. P. Zinter and M. J. Levene, “Maximizing fluorescence collection efficiency in multiphoton microscopy,” Opt. Express 19(16), 15348–15362 (2011). [CrossRef] [PubMed]
  33. J. P. Rice, Y. Zong, and D. J. Dummer, “Spatial uniformity comparison of two nonimaging concentrators,” Opt. Eng. 36(11), 2943–2947 (1997). [CrossRef]
  34. S. K. MacDougall, A. Ivaturi, J. Marques-Hueso, K. W. Krämer, and B. S. Richards, “Ultra-high photoluminescent quantum yield of β-NaYF4: 10% Er3+ via broadband excitation of upconversion for photovoltaic devices,” Opt. Express 20(S6), A879–A887 (2012). [CrossRef]
  35. F. Pellé, S. Ivanova, and J.-F. Guillemoles, “Upconversion of 1.54 μm radiation in Er3+ doped fluoride-based materials for c-Si solar cell with improved efficiency,” EPJ Photovoltaics 2, 20601 (2011). [CrossRef]
  36. A. Boccolini, R. Faoro, E. Favilla, S. Veronesi, and M. Tonelli, “BaY2F8 doped with Er3+: An upconverter material for photovoltaic application,” J. Appl. Phys. 114(6), 064904 (2013). [CrossRef]
  37. R. Winston, J. C. Miñano, and P. G. Benitez, Nonimaging Optics (Academic Press, Amsterdam; Boston, Mass., 2005).
  38. R. Abram, R. Allen, and R. Goodfellow, “The coupling of light emitting diodes to optical fibers using sphere lenses,” J. Appl. Phys. 46(8), 3468–3474 (1975). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited